
Real-time Multi-target Tracking
by Cooperative Distributed Active Vision Agents

Norimichi Ukita and Takashi Matsuyama
Graduate School of Informatics, Kyoto University

Yoshidahonmachi, Sakyo, Kyoto, Japan

souhaku@vision.kuee.kyoto-u.ac.jp and tm@i.kyoto-u.ac.jp

ABSTRACT
This paper presents a real-time cooperative multi-target track-
ing system. The system consists of a group of Active Vi-
sion Agents (AVAs), where an AVA is a logical model of
a network-connected computer with an active camera. All
AVAs cooperatively track their target objects by dynami-
cally interacting with each other. As a result, the system as
a whole can track multiple moving objects simultaneously
under complicated dynamic situations in the real world.
To implement the real-time cooperation among AVAs, we
designed a three-layered interaction architecture. In each
layer, parallel processes mutually exchange various informa-
tion for the effective cooperation. To realize the information
exchange in real time, we employed the dynamic memory ar-
chitecture[6]. Experimental results demonstrate that AVAs
cooperatively track their target objects in real-time while
adaptively changing their roles.

Categories and Subject Descriptors
I [4]: 8

General Terms
Design

1. INTRODUCTION
Object tracking is one of the most important and funda-

mental technologies for realizing real-world vision systems
(e.g., visual surveillance systems, ITS (Intelligent Transport
System) and so on). Although a large number of works
about object tracking have been reported, we first propose
a real-time multi-target tracking system with multi-active
cameras.

We propose a real-time cooperative tracking system that
gazes at multiple targets simultaneously. To realize real-
time flexible tracking in a wide-spread area, the system
consists of communicating Active Vision Agents (AVAs, in
short), where an AVA is a logical model of a network-connected

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’02 July 15–19, 2002, Bologna, Italy.
Copyright 2002 ACM 1-58113-480-0/02/0007 ...$5.00.

Anomalous regions

Generated image

Parameters
Pan, Tilt, Zoom

Panoramic background image

Camera actionInput image

2.

3.

4.

1.

Figure 1: Object detection and tracking using an
FV-PTZ camera.

computer with an active camera. A group of spatially dis-
tributed AVAs enable continuous wide-area observation as
well as detailed measurement of 3D object information. For
real-time tracking by multiple AVAs, we have to solve many
problems (e.g., how to design an active camera for dynamic
object detection[1] and how to realize real-time object track-
ing with an active camera[6]). In this paper, we put our
focus upon how to realize a real-time cooperation among
AVAs.

In order to implement the real-time cooperation among
AVAs, we propose a three-layered interaction architecture.
In each layer, parallel processes exchange different kinds of
information for effective cooperation. To realize a real-time
information exchange and processing, we employ the dy-
namic memory architecture proposed in [6]. The dynamic
interaction in each layer allows the total system to track
multiple moving objects under complicated dynamic situa-
tions in the real world.

Experimental results demonstrate that the proposed real-
time cooperation method enables the system to 1) success-
fully acquire the dynamic object information and 2) adap-
tively assign the appropriate role to each AVA.

2. COOPERATIVE OBJECT TRACKING

2.1 Architecture of AVA and Its Functions
Each AVA possesses a single Fixed-Viewpoint Pan-Tilt-

Zoom (FV-PTZ) camera[1]: its projection center stays fixed
irrespectively of any camera rotations and zoomings. With
pan-tilt-zoom cameras, we aim at designing a system that
can not only track trajectories of targets but also acquire
their detailed information.

By employing the property of FV-PTZ camera, an AVA

can track a moving object as illustrated in Fig.1:

1. Generate a wide panoramic image of the scene; with
the FV-PTZ camera, a wide panoramic image can be
easily generated by mosaicing multiple images observed
by changing pan, tilt and zoom parameters.

2. Extract a window image from the panoramic image
according to the current pan-tilt-zoom parameters and
regard it as the background image; the direct mapping
exists between the position in the panoramic image
and pan-tilt-zoom parameters of the camera.

3. Compute difference between the generated background
image and an observed image.

4. If anomalous regions are detected in the difference im-
age, select one and control the camera parameters to
track the selected target. Otherwise, move the camera
along the predefined trajectory to search for an object.

A camera is coupled to a network-connected computer.
This network is not a special close network (e.g., PC cluster)
but an unreliable open network.

In general, there are two kinds of agents:

Software agent is a virtual agent without any physical
body in the real world. Each agent corresponds to
a logical data (e.g., the information of the detected
object) in the system (see [3], for example).

Real-world agent is an agent with its own physical body
(e.g., an active camera and a mobile robot) that can
be controlled by itself (see [4], for example).

We believe that an intelligent system has to possess its own
body to mutually interact with the real world. We, there-
fore, define an agent to correspond to each physical body in
the real world.

Although several object tracking systems with multi-camera
and multi-agent systems are reported, most of them employ
only software agents. In [2, 5], 1) a software agent is defined
to correspond to the information of each object detected
by the system and 2) all cameras are shared by software
agents, each of which manages the information of each de-
tected object. These definitions force each software agent to
examine the object information detected by all cameras for
tracking its target. Besides this technological problem, the
above definitions have an essential limitation: multiple soft-
ware agents may control a camera inconsistently in tracking
their targets (i.e., controlling pan, tilt and zoom parame-
ters), if the system employed active cameras. This results
in difficulty for a camera to gaze at multiple objects simulta-
neously. Accordingly, the above essential limitation is fatal
for realizing the system which we aim at.

In our system, on the other hand, an agent (i.e., AVA)
corresponds to a single active camera. Each AVA can, there-
fore, control its own camera to gaze at its target. As we can
see, our definition of the agent has the advantage in that it
has the one-to-one correspondence between the agent and
the camera.

In addition, in our system also, the information of each
target should be managed intensively to 1) record the in-
formation of each object severally and 2) compare the in-
formation of different objects with each other. To realize
these functions, a software agent, which has the one-to-one
correspondence with an object, gathers its target informa-
tion detected by AVAs. In our system, AVAs that track the

Agency2

Agency1

Object

Object

AVA2 AVA1 AVA2

AVA3AVA4

image camera

Detect!

Navigated!

Navigated! Cooperating!

Cooperating! Cooperating!

Agency

Object1

Object2

target
Change

AVA1 AVA2

AVA3AVA4

AVA1

AVA4 AVA3

(a) (b) (c)
Figure 2: Basic scheme for cooperative tracking: (a)
Gaze navigation, (b) Cooperative gazing, (c) Adap-
tive tracking.

same object form a group called an agency, and a software
agent corresponding to each agency works as the entity of
the agency (will be mentioned later).

2.2 Basic Scheme for Cooperative Tracking
In our system, many AVAs are embedded in the real world

and observe a wide area. We impose the following con-
straints about the camera configuration on the system:

• Visual fields of cameras are overlapping with each other
in order to keep tracking a target in the observation
scene without a break.

• In addition, all the observation spaces can be observed
by at least two cameras. This is because every space
has to be observed by multiple cameras to reconstruct
3D information of an object.

Under this restriction, we can determine the camera config-
uration arbitrarily.

With these AVAs, we realize a multi-AVA system that co-
operatively tracks multiple targets. Following are the tasks
of the system:

1. Initially, each AVA independently searches for an ob-
ject that comes into the observation scene.

2. If an AVA detects a target, it navigates the gazes of
other AVAs towards the target (Fig.2 (a)).

3. AVAs, which gaze at the same object, track the focused
target cooperatively (Fig.2 (b)). A group of AVAs that
track the same object is called an Agency.

4. Depending on the target motion, each AVA dynami-
cally changes its target (Fig.2 (c)).

5. When the target gets out of the scene, each AVA de-
cides whether it searches for an object again or joins
another agency depending on situations.

To realize the above cooperative tracking, we have to solve
the following problems:

Multi-target identification: To gaze at each target, the
system has to distinguish multiple objects.

Real-time and reactive processing: To cope with the dy-
namics in the scene (e.g., object motion), the system
has to execute the process in real time and deal with
the variations in the scene reactively.

Adaptive resource allocation: We have to implement a
two phased dynamic resource (i.e., AVA) allocation: 1)
To perform both object search and tracking simultane-
ously, the system has to preserve AVAs that search for
new targets even while tracking targets, 2) For each
target to be tracked by the AVA that is suitable for
gazing at, the system has to adaptively assign AVAs
to their targets.

0 Search

Tracking

1

1

TC

S C

L

C

P

S P

TP

0 Search

Tracking

1

1

TC

SC

L

C

1

L 2

L 3

(a) (b)

Figure 3: System state graph: (a) Current state
and Task-constraint, (b) Three types of the system
states.

We solve these problems with real-time cooperative commu-
nication among AVAs and agencies.

3. TASK SPECIFICATION
The tracking system need to search for an object in the

scene. This role is called Search. Once the target is detected,
the system gazes at it to obtain its information. This role is
called Tracking. In addition, the system is also required to
selectively gaze at the object whose information is necessary
for the given task. We specify the task of the system by the
following three parameters, namely a Task-Constraint, an
Object-Importance and a Utility-Function.

3.1 Task-Constraint
An AVA that searches for an object is called a Freelancer-

AVA. An AVA belonging to an agency for tracking its target
is called a Member-AVA.

We realize various capabilities of the system, in terms of
the combination of search and tracking as shown in Fig.3.
We call this graph a System State Graph. We represent the
state of the system as follows (Fig.3).

Def. 1 (Search-level, Tracking-level). The search-
level (the horizontal axis) and the tracking-level (the verti-
cal axis) indicate the rate of AVAs that perform search and
tracking, respectively.

0 ≤ Search-level (= NF /NA) ≤ 1

0 ≤ Tracking-level (= NM/NA) ≤ 1,

where NF , NM and NA denote the numbers of freelancer-
AVAs, member-AVAs and all AVAs, respectively.

We define the task-constraint and the current state of the
system on the system state graph.

Def. 2 (Current state � (SP , TP)). This parameter
(� in Fig.3) represents the search-level (SP) and the tracking-
level (TP) at the present time. The range of � is on the line
L in Fig.3 (a). That is, (SP + TP) is always 1.

Def. 3 (Task-constraint �(SC , TC)). This parame-
ter (� in Fig.3) represents the minimum search-level (SC)
and tracking-level (TC), where 0 ≤ (SC + TC) ≤ 1. That
is, a combination of SC and TC is within a triangle deter-
mined by the horizontal and vertical axes and the line L in
Fig.3. The system has to keep SC and TC while working.
The system, therefore, adjusts its current state so that its
current search-level and tracking-level (i.e., (SP , TP)) are
not less than those of the task-constraint (i.e., (SC , TC)).
The task-constraint is given by a user as a pair of constants
(i.e., SC and TC) depending on the task of the system.

Followings are the system states determined by the rela-
tions between the task-constraint and the current state.

Shortage of search-level: � is on L1 in Fig.3 (b).

Task satisfaction: � is on L2 in Fig.3 (b).

Shortage of tracking-level: � is on L3 in Fig.3 (b).

Each AVA dynamically changes its own role between search
and tracking in order to satisfy the task-constraint.

3.2 Object-Importance
The object-importance is given to each object’s category

that can be distinguished by the system.

Def. 4 (Object-importance IP). Let IP denote the
object-importance of the target of agencyP . The range of
the object-importance is 0 ≤ IP ≤ 1.

The number of the member-AVAs in agencyP (denoted by
MP) is determined by the object-importance of the target:
MP = (The total number of AVAs)×(IP /S). Provided that
S is the total sum of the object-importance I1,··· ,A, where A
is the total number of the agencies. That is, the number of
the member-AVAs is proportional to the object-importance
of the target.

3.3 Utility-Function
Each AVA can freely change its role under the restric-

tions given by the task-constraint and object-importance.
A guideline for the adaptive role assignment is represented
by what we call the utility-function. Each AVA decides its
role to increase the value of the utility-function while keep-
ing the task-constraint and object-importance. The utility-
function of our tracking system is the sum of the following
search-value and tracking-value.

• Search-value of a freelancer-AVA is determined
by a fitness of each freelancer-AVA for search.

• Tracking-value of a member-AVA is determined
by a fitness of each member-AVA for tracking its tar-
get.

This utility-function can be designed to be adapt itself to
the task given by a user1.

4. DYNAMIC INTERACTION FOR COOP-
ERATIVE TRACKING

In our system, parallel processes cooperatively work by
dynamically interacting with each other. As a result, the
system as a whole works as a tracking system. By composing
the system as a group of multiple processes, we can repre-
sent various complex behaviors of the total system through
the interaction between processes. Designing the total sys-
tem can be, therefore, reduced to designing each process.
Furthermore, the states and those transitions of the sys-
tem increase enormously by combining with each other. We
believe that this property allows the system to cope with
complicated situations in the real world.

For the system to engage in object tracking, object iden-
tification is significant. We, therefore, classify the system
into three layers depending on the types of object infor-
mation employed for identification. In each layer, object

1We give an example in Sec.6.1.

Perception Module Dynamic Memory

Communication
Module

Action Module

MemberAVA2

MemberAVA3

MemberAVA1

Agency2

Agency3

Inter-Agency Layer

Intra-Agency Layer

Intra-AVA Layer

Agency Information

Perception Data

Camera Data Object Data

Dynamic
Memory

Agency1

Agency Manager

Object Information

AVA

Freelancer-AVAs

Object Information

FreelancerAVA2

FreelancerAVA1

Figure 4: Three layers in the system: Intra-AVA
(bottom), Intra-Agency (middle) and Inter-Agency
(top) layers.

identification according to the type of exchanged informa-
tion is established. Depending on whether or not object
identification is successful, a dynamic interaction protocol
for cooperative object tracking is activated. In what fol-
lows, we first introduce the general concept and functions
for real-time interaction among processes, and address the
interactions in each layer.

4.1 Dynamic Memory Architecture for Real-
time Asynchronous Interaction

For real-time asynchronous interaction among parallel pro-
cesses, Matsuyama et al.[6] proposed the Dynamic Memory
Architecture. The dynamic memory architecture maintains
not only temporal histories of state variables such as cam-
era pan-tilt angles and target object locations but also their
predicted values in the future.

In the dynamic memory architecture, multiple parallel
processes share the dynamic memory. Each process writes
its state variable such as pan-tilt angles of the camera and
the target object location. This information is shared among
all the processes through the dynamic memory. Since the
shared information is written as a temporal history and
shared among the processes, the time information in all the
processes have to been synchronized with each other.

The read/write operations from/to the dynamic memory
are defined as follows:

Write operation: When a process computes a value v of
a variable at a certain moment t, it writes (v, t) into
the dynamic memory. Since such computation is done
repeatedly according to the dynamics of the process,
a discrete temporal sequence of values is recorded for
each variable in the dynamic memory.

Read operation: A reader process runs in parallel to the
writer process and tries to read from the dynamic
memory the value of the variable at a certain mo-
ment according to its own dynamics. Since the dy-
namic memory can interpolate a value at the specified
moment from the recorded discrete values, the reader
process can read a value at any temporal moment.

A reader process may run fast and require data which
are not written yet by the writer process. In such case,
the dynamic memory predicts an expected value in the
future based on those data so far recorded.

4.2 Intra-AVA layer
In the bottom layer in Fig.4, perception, action and com-

munication modules that compose an AVA exchange the
time-series information with each other via the dynamic
memory possessed by each AVA. The interaction among
three modules materializes the functions of the AVA.

Perception: This module continues to capture images and
detect objects in the observed image. Let the 3D
view line L be determined by the projection center
of the camera and the object region centroid in the
observed image. When the module detects N objects
at t + 1, it computes and records into the dynamic
memory the 3D view lines toward the objects (i.e.,
L1(t+1), · · · , LN (t+1)). Then, the module compares
them with the 3D view line toward its currently track-

ing target at t + 1, �L(t + 1). Note that �L(t + 1) can
be read from the dynamic memory whatever temporal
moment t + 1 specifies. Suppose Lx(t + 1) is closest

to �L(t + 1), where x ∈ {1, · · · , N}. Then, the module
regards Lx(t + 1) as denoting the newest target view
line and records it into the dynamic memory.

Action: When an active camera is ready to accept a con-
trol command, the action module reads the 3D view

line toward the target (i.e., �L(now)) from the dynamic
memory and controls the camera to gaze at the target.
As will be described later, when an agency with mul-
tiple AVAs tracks the target, it measures the 3D posi-

tion of the target (i.e., �P (t)) and sends it to all member
AVAs, which then is written into the dynamic memory
by the communication module. If such information is
available, the action module controls the camera based

on �P (now) in stead of �L(now).

Communication: Data exchanged by the communication
module over the network can be classified into two
types: detected object data (e.g., �L(t) and �P (t)) and
messages for various communication protocols which
will be described later.

To cooperatively work as stated above, perception, action
and communication modules provide the following time-series
information managed by each module; perception: 3D view
lines of detected objects, action: camera parameters, com-
munication: received information of objects.

4.3 Intra-Agency layer
In the middle layer in Fig.4, member-AVAs belonging to

the same agency exchange the information of the detected
objects for object identification. In our system, an agency
should correspond one-to-one to a target. To make this cor-
respondence dynamically established and persistently main-
tained, the following two kinds of object identification are
required in the intra-agency layer.

Spatial object identification The agency has to estab-
lish object identification between the 3D view lines
detected by its member-AVAs1,··· ,M . {Li

m(tm)|i =
1, · · · , Nm} denotes the 3D view lines1,··· ,Nm that are

time

time

Real Value
Estimated Value

Sequence of
View lines

Sequence of
View lines

Intrepolation

Virtual
Synchronization

Observed
by Member1

Estimated Value

Estimation

T

View direction

View direction

Observed
by Member2

Estimated Value

L (T)2

_

L (T)1

_

Member2

Member1

Member3

Agency

Virtual synch.

O(t)3O(t)2O(t)1

L (t)33

L (t)31
L (t)11

L (t)32
L (t)22

_

_

Identifiy!

(a) (b)

Figure 5: Virtual synchronization for spatial object
identification: (a) Read values from the dynamic
memory, (b) Spatial identification.

detected by member-AVAm at tm. If the distance be-
tween the 3D view lines detected by different AVAs is
less than the threshold, these 3D view lines are con-
sidered as the information of the same object. In ad-
dition, the intersection of the identified 3D view lines
is regarded as the 3D position of the object.

Temporal object identification To gaze at the target con-
tinuously, the agency compares the 3D position of the

target at t (�P (t)) with the 3D positions of the ob-
jects observed at t + 1 ({Pi(t + 1)|i = 1, · · · , N}).
Let Px(t+1) have the shortest distance between �P (t),
where x ∈ {1, · · · , N}. The agency then considers
Px(t + 1) as the 3D position of the target at t + 1.

Consequently, �P (t + 1) = Px(t + 1).

4.3.1 Virtual Synchronization for Spatial Identifica-
tion

Since AVAs capture images autonomously, member-AVAs
observe the object information at different times. Further-
more, message delay via network makes an interval between
capturing timings of different AVAs larger. The result of
object identification is, therefore, unreliable because asyn-
chronized object information from each camera is compared
with each other.

Other distributed systems which consist of autonomous
cameras coped with this problem as follows: In [2], the
newest information gathered from each camera is considered
to be observed at the same time. In [5, 7], the system re-
gards the detected information observed at ti and tj , where
|ti−tj | is small enough, as simultaneous information. These
approximate methods break down under complicated situa-
tions and network congestion.

To solve this problem, we put the dynamic memory in
the intra-agency layer as we do in the intra-AVA layer. A
3D view line at any time can be estimated from time-series
data recorded in the dynamic memory. We can, therefore,
estimate a 3D view line observed by each AVA at the same
time. We call this procedure a Virtual Synchronization.

Figure 5 (a) shows the virtual synchronization. In this
example, the object information (i.e., the 3D view line) de-
tected by member-AVA1 and member-AVA2 is written in
the same dynamic memory (indicated by white points in
the figure). To establish spatial object identification at T ,
the agency can obtain the 3D view lines detected by both
member AVAs at T (denoted by L̄1(T) and L̄2(T), both of
which are indicated by black points in the figure) by esti-

time

Real value
Estimated value

Sequence of
Positions

Intrepolation

Virtual
Synchronization

Estimation

Position Estimated value P (T)
_

T

Reconstructed value P (T)

Member2

Member1

Member3

Agency

Virtual synch.

P (t+1)P (t)

_
Identify!

^

P (t+1)

L (t+1)1

L (t+1)2
L (t+1)3

(a) (b)

Figure 6: Virtual synchronization for temporal ob-
ject identification: (a) Read values from the dy-
namic memory, (b) Temporal identification.

mating the values from the dynamic memory.
In our system, spatial object identification is practically

realized as follows. When an agency is formed (mentioned
in Sec.4.3.3), an Agency Manager is generated at the same
time. An agency manager is an autonomous module 2 in-
dependent of AVAs, and performs the following tasks as a
delegate of an agency:

• Two types of object identification: identification among
member-AVAs and identification with other agencies.

• Management of the dynamic memory in each agency.

• Communication with agencies and freelancer-AVAs.

That is, an agency is a conceptual group, and an agency
manager is an entity of the agency. There exists one-to-one
correspondence between the target (and its information) and
the agency (and its agency manager). For each agency to
manage the information of its target intensively, the system
handle the object information as follows: 1) all the member-
AVAs send the information of the detected objects to its
agency manager, 2) the agency manager records its object
information into the database when the agency is eliminated,
and this information will be read by the newly generated
agency if their targets are the same object.

When member-AVAm sends the information of the de-
tected object (i.e., {Li

m(tm)|i = 1, · · · , Nm}) to the agency
manager in the same agency, the agency manager writes the
received value in its dynamic memory. When spatial object
identification is required, the agency manager reads the ob-
served object information of all member-AVAs1,··· ,M , which
are obtained by the virtual synchronization (i.e., {L̄i

1(T)|i =
1, · · · , N1}, · · · , {L̄i

M (T)|i = 1, · · · , NM}). If the distance
between L̄i

p(T) and L̄j
q(T) is small enough, the agency man-

ager regards i-th detected result of AVAp and j-th detected
result of AVAq as the 3D view lines both of which go towards
the same object.

In an example illustrated in Fig.5 (b), by comparing virtu-
ally synchronized values L̄1(t3), L̄2(t3) and L3(t3) with each
other, reliable spatial object identification can be realized.

4.3.2 Virtual Synchronization for Temporal Identifi-
cation

For temporal object identification, an agency manager has
to compare the 3D position of its target at t with the 3D
positions of the detected objects1,··· ,N at t + 1. The result
of object identification is, however, unreliable because the

2In our system, an agency manager is implemented by a
UNIX process on a PC.

(2-b)
Member

Identification Success
Message

Member

3D view line

(1)

Detect! Member

(ID Request) object

(2-a)
Member

Freelancer Freelancer

Freelancer

Identification Failure
Message

Member

Agency Agency
Generate!

Agency
Agency

Figure 7: Agency formation protocol.

object

(1)

Member Member

(3)

Member

Identification Failure
Message

Member

Obstacle

Invisible

3D view line
(Detected result)

(2)

Member Member

3D object position
(Gaze navigation)

Member m

Agency Agency

Agency

Member m

Figure 8: Agency maintenance protocol.

MemberMember

3D view line
(Detected result)

MemberMember

Member

Agency Spawn
Message

MemberMember

Member

object
new

(1) (2) (3)

Agency Agency

Agency

Agency

n n

new object

Ln

Member n

Ln

Figure 9: Agency spawning protocol.

object information obtained at different times is compared
with each other.

This problem can be also solved with the dynamic mem-
ory. That is, an agency manager records the 3D position

of the target (i.e., �P (t)) into the dynamic memory as time-
series data. The agency manager can, therefore, estimate
the 3D position of the target at t + 1 (i.e., P̄ (t + 1)), and
compare P̄ (t + 1) with the 3D positions of the detected ob-
jects (i.e., {Pi(t+1)|i = 1, · · · , N}). Px(t+1) which has the
shortest distance between P̄ (t + 1) is considered as the 3D
position of the target at t + 1. Thus, the result of temporal
object identification becomes reliable.

Figure 6 shows an example of temporal object identifi-
cation with the virtual synchronization. The 3D position
P (t+1) is reconstructed at t+1. The agency manager then
estimates the 3D position of the target at t+1 (i.e., P̄ (t+1)),
and compares P̄ (t + 1) with P (t + 1).

Depending on whether or not spatial and temporal object
identifications are successful, the dynamic interactions in the
intra-agency layer are activated. These dynamic interactions
are defined by the following three protocols.

4.3.3 Agency Formation Protocol
An Agency Formation protocol defines 1) the new agency

generation by a freelancer-AVA and 2) the participation of
a freelancer-AVA in an existing agency.

Initially, each AVA independently searches for an object.
When a freelancer-AVA finds a new object, it requests from
the existing agencies object identification between the newly
detected object and the target of each agency (Fig.7, (1)).
Depending on whether or not the result of object identifica-
tion is successful, the freelancer-AVA works as follows:

• When no agency established a successful iden-
tification, the freelancer-AVA that finds the new ob-
ject starts a new agency manager and joins this agency
(Fig.7, (2-a)).

• When an agency established a successful iden-
tification, the freelancer-AVA joins the agency that
has made successful identification, if the system can
keep the task-constraint (Fig.7, (2-b)).

4.3.4 Agency Maintenance Protocol
An Agency Maintenance protocol defines 1) the coopera-

tive tracking, 2) the continuous maintenance of an agency
and 3) the elimination of an agency.

After an agency is generated, the agency manager contin-
ues spatial and temporal object identifications for coopera-
tive tracking (Fig.8, (1)). If temporal object identification
between the target of the agency and the object detected by
member-AVAm fails, the agency manager reports the 3D po-
sition of the target to member-AVAm. This information nav-
igates the gaze of member-AVAm towards the target (Fig.8,
(2)). Nevertheless, if the failure of identification continues
for a long time, the agency manager puts member-AVAm

out of the agency (Fig.8, (3)).
If all member-AVAs are unable to observe the target, the

agency manager eliminates the agency. All the member-
AVAs then return to freelancer-AVAs.

4.3.5 Agency Spawning Protocol
An Agency Spawning protocol defines the new agency gen-

eration from an existing agency.
After spatial and temporal object identifications, the agency

manager may find such a 3D view line(s) that does not cor-
respond to the target. Let Ln denote such 3D view line
detected by member-AVAn (Fig.9, (1)). The agency man-
ager requires other agencies to compare Ln with their own
targets for object identification. If none of the identification
is successful (namely, it seems that there is not an agency
that tracks the newly detected object in the system), the
agency manager orders member-AVAn to generate a new
agency (Fig.9, (2)). Member-AVAn then joins a new agency
(Fig.9, (3)).

4.4 Inter-Agency layer
The fundamental task of an agency is to keep tracking

its own target. To keep tracking the target in the compli-
cated wide area, agencies need to adaptively exchange their
member-AVAs with each other. To realize the adaptive re-
construction of the agency, the information about targets
and member-AVAs are exchanged between agencies (the top
layer in Fig.4). An agency that has received this information
from another agency (agencyi) compares the 3D position of
its own target with that of agencyi’s target. This object
identification is not reliable if these 3D positions are ob-
served at different times. This problem can be solved with
the virtual synchronization in the same way as temporal ob-
ject identification in the intra-agency layer. With the 3D
positions of its target recorded as time-series data in the
dynamic memory, the agency manager can synchronize the
3D position of its target with the received 3D position of
another object.

Depending on the result of object identification between
agencies, the following two protocols are activated.

4.4.1 Agency Unification Protocol

Unify Request
Message

Member

Member

Member

Member

Member

Member

Member

Member

Member

(1) (2) (3)

AgencyAgencyAgency

Agency Agency

AAA

B B

Change Agency
Message

Figure 10: Agency unification protocol.

AVA Request
Message

Change Agency
Message

Join Agency
Message

Member

Member

Member

Member

Member Member

Member

Member

(1) (2) (3)

Member

Member

AgencyC AgencyC
AgencyC

AgencyD

AgencyD

AgencyD

o

oMember

TargetC

DTarget

Figure 11: Agency restructuring protocol.

An Agency Unification protocol defines the merging pro-
cedure of the agencies, both of which happen to track the
same object. This protocol is achieved when the result of
object identification between the agencies is successful.

Followings are actual examples of situations that cause
the agency unification.

• When the agency considers multiple objects in the
scene as a single object because of the identification
failure (e.g., when different objects become close enough
to be identified as the same object).

• When a single object is regarded as multiple objects
because of the identification failure, and then multiple
agencies are formed for the same object.

That is, this protocol is required to cope with failures of
object identification and discrimination.

Figure 10 shows an example. Agency managerA, which
has made successful object identification with agencyB , re-
quests agencyB to join agencyA (Fig.10, (1)). Agency managerB

then orders its member-AVAs to transfer to agencyA (Fig.10,
(2)). Agency managerB then eliminates itself. Thus, two
agencies merge together (Fig.10, (3)).

4.4.2 Agency Restructuring Protocol
An Agency Restructuring protocol defines the dynamic in-

terchange of member-AVAs between agencies. This protocol
is achieved when the result of object identification between
the agencies is unsuccessful. The agency manager performs
this protocol taking into account the following two factors:

• The number of the member-AVAs is determined by the
object-importance of the target.

• Under the restriction about the number, each agency
is attended by AVAs, which are suitable for gazing at
the target, based on the utility-function.

We have various factors in determining the fitness of each
AVA for tracking, namely the criterion for the agency re-
structuring. A user can settle down this criterion depending
on the task given to the system.

In an example illustrated in Fig.11, agencyD requests a
member-AVA from agencyC , and then agencyC transfers
member-AVAo to agencyD.

4.4.3 Communication with Freelancer-AVAs
An agency manager communicates with freelancer-AVAs

as well as with other managers (the top layer in Fig.4).
As described in the agency formation protocol in Sec.4.3.3,
a freelancer-AVA activates the communication with agency
managers when it detects an object. To determine whether
or not generate a new agency based on the agency forma-
tion protocol, a freelancer-AVA communicates with agency
managers when it detects an object. An agency manager, on
the other hand, sends to freelancer-AVAs its target position
when the new data are obtained. Then, each freelancer-AVA
decides whether it continues to be a freelancer-AVA or joins
into the agency depending on the task specification and the
current state of the system. Note that in our system a user
can specify the number of freelancer-AVAs to be preserved
while tracking targets.

5. COMPLETENESS OF THE SYSTEM

5.1 Completeness for Persistent Tracking
We define an agency as a representation of a target in the

system. Because of this definition, the maximum number
of targets is equal to that of agencies. An agency has to
be attended by at least one member-AVA for tracking its
target. The maximum number of agencies, therefore, is the
total number of AVAs in the system. In the proposed sys-
tem, however, an agency reconstructs 3D information of its
target from 2D information of the object observed by multi-
ple member-AVAs. The 3D information of the target greatly
assists the agency to keep tracking the target. Accordingly,
each agency should have at least two member-AVAs for re-
liable object tracking.

Based on the above discussion, we summarize the relations
between the tracking ability of the system and the numbers
of targets and AVAs (denoted by nt and na, respectively) as
follows:

Case 1: nt ≤ �na
2
�: The system can stably track all targets

while obtaining their 3D information.

Case 2: �na
2
� < nt ≤ na: Although the system can track

all targets, (nt −�na
2
�) or more targets are tracked by

a single AVA.

Case 3: na < nt: (nt − na) or more objects cannot be
tracked by the system simultaneously.

Note that �n� denotes the maximum integer less than n.
The limitation about the number of targets results be-

cause 1) an agency receives the information of objects only
from its member-AVAs and 2) an agency has to be attended
by at least one member-AVA. To design alternative meth-
ods, we could modify the system as follows:

Broadcast for 3D reconstruction: If an agency receives
the object information from all AVAs, it can possi-
bly reconstruct the 3D information of the target even
when it has only one member-AVA. In this case, how-
ever, each AVA has to send the information of the de-
tected objects to all agency managers. This increases
a network-load.

Camera control for vacuous agencies: If an agency can
exist without any member-AVA, the system can track
all targets even in the above case 3. To obtain the in-
formation of the target, a vacuous agency has to gather

initial

FreelancerMember

Agency Spawning

Member (Change Agency)

Agency Restructuring
ε

ε

ε

Agency Formation
(IDF Failure)

Agency Formation
(IDF Success)

Agency Maintenance
(IDM Failure)

Agency Unification

Member (Generate Agency)

Agency Formation

Agency
Maintenance
(IDM Success)

{

initial

Agency
Agency
(Increase
 Member)

Agency(Decrease Member)

Agency Maintenance
(IDM Success) ε

Agency Formation

Agency Restructuring
Agency Maintenance
(IDM Failure)

ε

ε

Agency(Disappear)

Agency Unification
Agency Maintenance
(IDM Failure)

{{

{
Agency Unific

ation

Agency Restr
ucturing

{

(a) AVA (b) Agency

Figure 12: State transition networks of the AVA
and agency. Each box and arrow indicate a state
and state transition, respectively. A with each ar-
row causes a state transition. Protocols shown by
bold and italic fonts are caused by object identifica-
tion and a message that reports the result of object
identification established by another agency, respec-
tively. An automatic state transition (denoted by
ε) occurs immediately. IDF and IDM denote object
identification of the agency with the freelancer-AVA
and member-AVA, respectively.

the object information from non-member-AVAs. We
have to, therefore, solve the problem about increasing
the network-load mentioned above. In addition, a vac-
uous agency has essential problems: since a vacuous
agency cannot control any camera, it is not guaranteed
that the vacuous agency 1) keeps tracking the target
by controlling pan-tilt parameters of a camera(s) and
2) acquires its high-resolution image by adjusting a
zoom parameter of a camera(s).

Thus, to avoid these problems, we designed the system as
proposed above.

5.2 Completeness of Cooperative-tracking Pro-
tocols

In the proposed system, all events happened in the real
world are characterized by the results of object identifica-
tion. Therefore, by verifying the types of the protocols that
are executed depending on the result of each object identi-
fication, we can confirm the necessity and sufficiency of the
protocols for multi-target tracking.

All the protocols are activated by an agency, and object
identification is established when the agency received the ob-
ject information from freelancer-AVAs, member-AVAs and
other agencies. Table 1 shows the types of the protocols
that are activated according to the relations between the
type of the received object information and the result of
object identification. As we can see, the protocols are de-
signed just enough in accordance with the situations in the
real world.

5.3 Soundness of Communication and State
Transition

In each layer, multiple parallel processes 1) dynamically
exchange their information with each other for cooperation
and 2) adaptively change their states. These dynamic in-
teraction and state transition have to be realized without
causing deadlock.

Intra-AVA layer: The perception, action and communica-
tion modules exchange their information through the
dynamic memory in the intra-AVA layer. The dynamic

memory enables the modules to asynchronously obtain
the information of another process at any time.

In our system, since all modules in an AVA are imple-
mented by threads in a single PC, band-width among
modules is enough high.

Intra-agency layer: Since each agency manager has its
dynamic memory, 1) asynchronous message transmis-
sion from a member-AVA to its agency manager is
guaranteed and 2) reliable object identification in the
intra-agency layer is realized3.

In addition, several information (e.g., 3D position of
the target and messages based on the cooperative-
tracking protocols) is reported from the agency man-
ager to its member-AVAs by the message transmis-
sion. A member-AVA accepts only the message from
its agency manager not to be affected inconsistently by
multiple agencies: for example, a message delay incurs
the invalid communication.

Fig.12 (a) shows the state transition of the AVA. All
the state transitions of the AVA are caused by the
cooperative-tracking protocols except for ε.

Inter-agency layer: Depending on the result of inter-agency
object identification, various messages are exchanged
between agencies based on the inter-agency cooperative-
tracking protocol. To avoid a conflict of different in-
teractions between agencies, 1) each agency activates
a protocol only with a single agency simultaneously
and 2) a timeout process is utilized to cope with mes-
sage delays, dynamic agency generation and elimina-
tion, and other unpredictable factors.

Fig.12 (b) shows the state transition of the agency.

6. EXPERIMENTS
We employed ten AVAs. Each AVA is implemented on

a network-connected PC (PentiumIII 600MHz × 2) with
an active camera (SONY EVI-G20), where perception, ac-
tion, and communication modules are realized as threads.
The communication module exchanges information by un-
reliable UDP messages. In addition, the internal clocks of all
the PCs are synchronized by Network Time Protocol. With
this architecture, the perception module can capture images
and detect objects in the observed image at about 0.1[sec]
intervals on average.

Figure 15 (a) illustrates the camera layout in the room.
Camera9 and camera10 are placed about 1.5m above the
floor. All other cameras are placed about 2.5m above the
floor. The external camera parameters are calibrated.

6.1 Designing Utility-Function
We designed the utility-function as follows:

Search-value of freelancer-AVAf : Let Wf denote the
area size of the floor that is visible from AVAf . In
this experiment, Wf was computed from the external
parameters of cameraf (i.e., the 3D position and view
direction of the camera). The search-value of AVAf

(denoted by VSf) is determined as follows: VSf = αS×
Wf , where αs is a constant that is determined so that
VSf is well-balanced with the tracking-value.

3Depending on the band-width and network-load among
AVAs and agency managers, the performance of the dynamic
memory changes (described in Sec.6.2).

Table 1: Protocols activated depending on the result of object identification.
Received object information Identification success Identification failure

3D view lines of detected objects from a freelancer-AVA Agency Formation Agency Formation
3D view line of the target object from a member-AVA Agency Maintenance Agency Maintenance and Spawning
3D view lines of non-target objects from a member-AVA Agency Maintenance Agency Spawning
3D point of the target object from an agency Agency Unification Agency Restructuring

0

4

5

6

7

10

0 320 640 960 1280 1600 1920

message delay (msec)

size of message(kbytes/sec)

2

3

1

8

9

rate of lost packet (%)

40

50

60

70

100

20

30

10

80

90

rate of packet lost

message delay

0

10

15

25

0 320 640 960 1280 1600 1920

spatial error (cm)

size of message(kbytes/sec)

5

20

with virtual synch.
without virtual synch.

0

20

30

50

0 320 640 960 1280 1600 1920

temporal error (cm)

size of message(kbytes/sec)

10

40

with virtual synch.
without virtual synch.

between P(t) and P(t+1)^ ^

between P(t+1) and P(t+1)
- ^

(a) (b) (c)

Figure 13: (a) Delay of the message (solid line) and
Rate of lost packet (dotted line), (b) Error in spatial
object identification, (c) Error in temporal object
identification.

Tracking-value of member-AVAm: Let Dn
m denote the

3D distance between the camera of AVAm and the tar-
get of agencyn, and An

m denote the angle between the
central direction of AVAm’s view angle and the di-
rection from the camera to the target object. The
tracking-value of AVAm (denoted by VTn

m
) is deter-

mined as follows: VTn
m

= (1)/(Dn
m) × (1)(An

m).

6.2 Performance Evaluation
We conducted experiments with the systems with/without

the virtual synchronization. To verify the effectiveness of the
virtual synchronization against not only the asynchronized
observations but also the network congestion, we broad-
casted vain packets over the network to adjust the network
load.

The system tracked two computer-controlled mobile robots.
Both the robots repeated a straight-line motion at a speed
of 50[cm/sec] in the observation scene.

Figure 13 (a) shows variations of network conditions when
the size of the vain messages is changed. The error of spatial
identification in Fig.13 (b) denotes the average distance be-
tween the reconstructed 3D position and the 3D view lines
detected by member-AVAs. The error of temporal identi-
fication in Fig.13 (c) denotes the average distance between
the 3D positions of the same target, each of which are re-

constructed/estimated at different times (i.e., �P (t)/P̄ (t+1)

and �P (t + 1)).
As we can see, the virtual synchronization helps both spa-

tial and temporal object identifications, especially in the
case of bad network conditions.

6.3 Verification of Cooperative Tracking Pro-
tocols

In the next experiment, the system tracked two people.
Object1 first came into the scene. Next, object2 came into
the scene. Both objects then moved freely.

Followings are the task specification of this experiment.

Task-constraint: Search-level=0.1. Tracking-level=0.9.

5(m)

6(m)

Trajectory of Object2

Trajectory of Object1

AVA1

AVA5

AVA2 AVA10

AVA6

AVA3

AVA4

AVA7

AVA8

AVA9

0

2

4

6

8

10

0 10 20 30 40 50 60

(num)

(sec)

Freelancers
Members of Agency1

Members of Agency2

Detect Object2

Detect
Object1

5 15

 Object1 Exit

48

(a) (b)

Figure 15: (a) Trajectories of the targets, (b) The
number of AVAs that performed each role.

Object-importance: The values for all objects were 1.0.

The upper part of Fig.14 shows the partial image se-
quences observed by AVA2, AVA5 and AVA9. The images
on the same column were taken at almost the same time.
The regions enclosed by black and gray lines in the images
show the detected regions of object1 and object2, respec-
tively. Each figure in the bottom of Fig.14 shows the role
of each AVA and the agency organization at such a moment
when the same column of images in the upper part were
observed. White circles denote freelancer AVAs, while black
and gray circles indicate member AVAs belonging to agency1

and agency2, respectively. Black and gray squares indicate
computed locations of target1 and target2 respectively.

The system worked as follows.

a: Initially, each AVA searched for an object independently.

b: AVA5 first detected object1, and agency1 was formed.

c: All AVAs except for AVA5 were tracking object1 as the
member-AVAs of agency1, while AVA5 was searching
for a new object as a freelancer-AVA.

d: AVA5 detected object2 and generated agency2.

e: The agency restructuring balanced the numbers of member-
AVAs in agency1 and agency2.

f: Since no AVA could distinguish two objects, the agency
unification protocol merged agency2 into agency1.

g: When the targets got apart, agency1 detected a ’new’ tar-
get. Then, it activated the agency spawning protocol
to generate agency2 again for target2.

h: Object1 was going out of the scene.

i: After agency1 dissolved, all the AVAs except for AVA4

tracked object2 as the member-AVAs of agency2.

Figure 15 (a) shows the trajectories of the targets recon-
structed by the agencies. Figure (b) shows the dynamic pop-
ulation changes of freelancer AVAs, AVAs tracking target1
and those tracking target2.

As we can see, the dynamic cooperations among AVAs
and agencies worked well and enabled the system to keep
tracking multiple targets taking into account the given task.

AVA2: 2-a 2-b 2-c 2-d 2-e 2-f 2-g 2-h 2-i

AVA5: 5-a 5-b 5-c 5-d 5-e 5-f 5-g 5-h 5-i

AVA9: 9-a 9-b 9-c 9-d 9-e 9-f 9-g 9-h 9-i

AVA1

AVA2 AVA3

AVA4

(a) (b) (c) (d) (e) (f) (g) (h) (i)

time

Figure 14: Upper: Partial image sequences, Lower: The role of each AVA and the agency organization

7. CONCLUDING REMARKS
This paper proposed a real-time cooperative multi-target

tracking system with multiple active cameras. The system
has the following properties:

• Parallel processes dynamically interact with each other,
which results in the system that works as a whole for
cooperative tracking.

• The system is classified into three layers to efficiently
establish various types of object identification.

Intra-AVA: Perception, action and communication
modules work together as a single AVA by dy-
namically interacting with each other.

Intra-Agency: AVAs in the same agency exchange
object information to track the target.

Inter-Agency: In order to adaptively restructure agen-
cies taking into account targets’ motions, agencies
mutually exchange their information.

• Employing the dynamic memory realized the dynamic
interactions in each layer without synchronization. The
system is endowed with a high reactiveness.

These properties allow the system to be adaptable to com-
plicated dynamic situations in the real world.

To practically apply our system to real-world vision sys-
tems, the following issues should be discussed

The number of trackable targets: To enable the system
to track more targets than the number of AVAs, we
can modify the system so that an agency without any
member-AVAs can be generated. For an AVA to report
the object information to agencies without increasing
the network-load, the message should be sent only to
agencies that require the information. Such a member-
AVA that sends the information to other agencies is
called a Supporter-AVA. While a member-AVA can be
a supporter-AVA for multiple agencies, it has to be-
long to a single agency as a member-AVA for avoiding
inconsistent camera-control from different agencies.

Tracking in isolated camera configuration: In the pro-
posed system, visual fields of all AVAs are overlapping
with each other. To keep tracking a target even if cam-
eras are embedded sparsely, the system has to employ
not only the 3D trajectory of the target but also other
information for object identification: e.g., 1) appear-
ance information of objects is useful, and 2) constraints
on the route and lapse assist object identification[8].

This work was supported by the Grant-in-Aid for Scien-
tific Research(No.13224051).

8. REFERENCES
[1] T. Matsuyama, “Cooperative Distributed Vision -

Dynamic Integration of Visual Perception, Action and
Communication -”, Proc. of Image Understanding
Workshop, pp.365–384, 1998.

[2] A. Nakazawa, H. Kato, S. Hiura and S. Inokuchi,
“Tracking multiple people using distributed vision
systems”, Proc. of ICRA, 2002.

[3] N. Yoshida and T. Fuki, “Target Tracking Using
Tuple-Space-Based Mobile Agents”, Proc. of 19th
IASTED ICAI, pp.389–393, 2001.

[4] H. Ishiguro, “Distributed Vision System: A Perceptual
Information Infrastructure for Robot Navigation”,
Proc. of IJCAI-97, Vol.1, pp.36–41, 1997.

[5] B. Horling, et al, “Distributed Sensor Network for
Real Time Tracking”, Proc. of the 5th ICAA, pp.
417–424, 2001.

[6] T. Matsuyama, et al, “Dynamic Memory:
Architecture for Real Time Integration of Visual
Perception, Camera Action, and Network
Communication”, Proc. of CVPR, pp.728–735, 2000.

[7] G. P. Stein, “Tracking from Multiple View Points:
Self-calibration of Space and Time”, Proc. of CVPR,
Vol. I, pp.521–527, 1999.

[8] V. Kettnaker and R. Zabih. “Bayesian multi-camera
surveillance”, in Proc. of Computer Vision and
Pattern Recognition, pp.253–259, 1999.

