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Abstract

We propose a method for tracking non-rigid objects,
using an object model generated automatically from a
set of sample images. Our model consists of multiple
sticks and ellipses which represent the skeleton and the
areas of an object, respectively. Because appearance
features have to be extracted, previous methods cannot
estimate the whole area and posture for 2-D image of
a non-rigid object lacking sufficient characteristic fea-
tures (e.g., texture patterns, shape and so on) to be
detected easily. With the proposed model, on the other
hand, our method can work well because (1) each com-
ponent of the model can fit each rigid part of a non-
rigid object and (2) the reliability of each component
is evaluated. To confirm the effectiveness of the pro-
posed method, we conducted several experiments with
goldfish. The tracking system automatically generated
a model of the goldfish, and could then track goldfish
even when they were partially occluded.

1. Introduction

To understand dynamic situations in the real world,
object detection and tracking is one of the most funda-
mental technologies. We can obtain information about
observed objects (e.g., their number, velocity, and lo-
cus) with an object detection and tracking method.
Moreover, by estimating the posture of the object,
more detailed information (e.g., behavior and activ-
ity characteristics) can be acquired and the tracking
method can then be employed in various applications.

When multiple objects exist in an observed scene,
mutual occlusion may occur between them and inter-
fere with continuous tracking. Many studies have been
reported to solve this problem. In particular, several
methods[1, 2, 3] that incorporate stochastic dynamics
into the probabilistic framework have recently gained
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wide attention. While these methods can cope with
occlusions, and can be widely applied, they have the
following problems:

Problem 1 Cannot estimate the posture of a non-
rigid object (defined as an articulated object
whose joint positions are unknown):

In previous methods, the area of an object is repre-
sented as a simple configuration (e.g., an ellipse or
a rectangle). Therefore, only a simple rigid object
or a part (or several parts) of a complex non-rigid
object can be tracked. For example, the methods
proposed in [4] and [3] realized tracking of multi-
ple cars (i.e., rigid objects) and human heads (i.e.,
a part of a non-rigid object), respectively.

To extract the whole region of each non-rigid ob-
ject, on the other hand, an active contour model
is effective. For example, [5] and [6] employ the
Snake model and the Level set method, respec-
tively. However, these methods have the following
problems; (1) If a region of an object split into two
or more regions due to occlusion, these regions are
regarded as different objects after the breakup and
(2) a silhouette of an object is extracted, but its
posture cannot be estimated.

Problem 2 Cannot track the whole area of an object
which has insufficient features:

In [7], multiple moving people can be tracked
by employing an appearance-based human body
model consisting of textual and shape components.
In [8], an arbitrary non-rigid object can be tracked
based on the mean shift iterations and the method
can handle in real-time partial occlusions, signifi-
cant clutter and scale variation. These methods,
however, track the area of interest by extracting
characteristic texture patterns, colors, shapes, and
so on (e.g., skin color and the head of a human sub-
ject). It is difficult to find characteristic features
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in the whole of an arbitrary object, including ob-
jects with insufficient features such as animals and
fish.

We solve the above problems as follows:

Solution 1 The proposed method divides the area of
a target into multiple (semi)rigid parts, each of
which is defined as a part model. All part models
are integrated into an object model, where the end
points of multiple part models are combined with
each other and relative angles between them are
variable. The geometric configuration of all the
part models is considered to be the posture of the
observed object.

Solution 2 To evaluate the likely area of an arbi-
trary object, the following information is esti-
mated: skeleton (defined by the object’s central
line), color histogram, and rough shape (repre-
sented by an ellipse). These criteria are used to
determine the number and positions of the part
models, so that the whole area of the target is well
represented and each part model can be detected
easily. In addition, the adaptive reliability of each
part model is evaluated to counter self and mutual
occlusions.

Based on the above basic ideas, we represent the
object model as the integration of the stick and el-
lipse models. The stick model corresponds to a straight
skeleton that is a part of the center line of an object.
The ellipse model contains information about the color
and rough shape of an object. Our method can auto-
matically generate an object model from a set of sam-
ple images, and the object model is used for tracking
and estimating the positions and postures of multiple
non-rigid objects.

2. Object model generation

This section describes the processing which gener-
ates the object model automatically from a set of sam-
ple images (video). In a set of sample images, only one
object exists and it needs to be in various postures.

2.1. Stick model generation

It is possible to generate the stick model subjectively
if the target is an articulated object whose joint posi-
tions are known (see [9, 10], for example). Since the
target in this study is a non-rigid object whose joint po-
sitions are not known accurately, the system must es-
timate joint positions and the distances between joints
from sample images. We assume that a bone in the
skeleton can be approximated by a straight line; the

Figure 1. Sample
image.

Figure 2. Stick
model.

system then extracts the skeleton from the target ob-
ject’s area by a thinning algorithm. The system repre-
sents rigid parts of the skeleton as sticks by the Hough
transformation. Multiple sticks may be obtained from
one target. The system generates the stick model by
connecting multiple sticks and permitting changes of
relative angles. The stick model in Fig. 2 was gener-
ated from the sample image in Fig. 1. Note that in
a set of sample images, only one object exists and it
needs to be in various postures. One stick model is gen-
erated from one sample image. Because the number of
sticks and the connections between each stick change
with the target’s postures in sample images, the system
selects the stick model derived from the most compli-
cated posture, (that is, which has the most sticks in
all sample images) to adjust the posture changes, and
determines the selected model as the final stick model.
Here, we call the stick whose center of gravity is near-
est to that of the target area the standard stick, and
each other stick has an identification number.

2.2. Stick reliability

The system cannot extract the skeleton correspond-
ing to each stick in the stick model if the self occlusions
occurs, because the skeleton corresponds to the central
line of the target. Moreover, using the thinning algo-
rithm, the system may model a stick which does not in
fact exist due to the influence of noise. In such a case,
the stick either does not correspond to the skeleton,
or it corresponds to a skeleton derived from other por-
tions of the target. If the system relies equally on all
sticks in the stick model, it may cause tracking failure.
In our method, the system coped with this problem by
weighting the degree of stick reliability for every stick.

Here, the parameters of the standard stick are ex-
pressed by νstd = (x, y, θstd)�. (x, y) represents the
position of the stick, and θstd represents the angle.
The parameters of other sticks are expressed only by
the relative angle to the connecting stick, because
each stick connection must be maintained. The num-
ber of sticks in the stick model is expressed by n; if
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i identifies a stick, the parameters are expressed by
θi(i = 1, 2, . . . , n)(i �= std). The parameters of the stick
model are expressed by Φ = {θ1, θ2, . . . , νstd, . . . , θn}.

To compute the reliability of each stick, the stick
model as described in section 2.1 matches by changing
the position and angle of the stick model, so that all
sticks are within the target area. Matching degrees are
the two following:

• The degree of overlap between the pixel on the
target and on the stick:

The pixels on the target are expressed by L; if i
identifies a stick, the pixels on stick i are Si.

The degree of overlap of each stick is M i
ter, and the

degree of Mter which represents the total of M i
ter is

computed by formula (1). Here, the number of all sticks
in the stick model is n.

M i
ter(Φ) = N

(
Si(Φ) ∩ L

)
/ N

(
Si(Φ)

)

Mter(Φ) =
n∑

i=1

M i
ter(Φ), (1)

where N(I) denotes the number of pixels included in
I.

• The degree of overlap between the pixels on the
skeleton and on the stick:

The pixels on the skeleton of the target are expressed
by B. The degree of overlap of each stick is M i

skl, and
the degree of Mskl which represents the total of M i

skl

is computed by formula (2).

M i
skl(Φ) = N

(
Si(Φ) ∩ B

)
/ N

(
Si(Φ)

)

Mskl(Φ) =
n∑

i=1

M i
skl(Φ) (2)

So that all sticks are in the target area, the param-
eters are limited by applying threshold processing to
Mter. The system determines the parameters having
the highest degree of Mskl among the limited parame-
ters as the parameters corresponding to the target area.
The system judges whether the skeleton corresponding
to stick i exists by applying threshold processing to
M i

skl in the determined parameters. This judgement
is performed for every stick in the stick model. The
same processing is performed for all sample images.
The number of sample images in which skeletons cor-
responding to every stick exist is expressed by Si

ex, and
the total number of sample images is expressed as Sn.

Skeleton existence probability γi
skl is computed by

Si
ex / Sn. The reliability of each stick W i

stk is computed

by formula (3), so that the total of the reliabilities is
1.0.

W i
stk = γi

skl /

n∑

i=1

γi
skl (3)

2.3. Ellipse model generation

In our method, the ellipse model has rough shape
and color histogram as information about the features
representing the target. The shape information needs
to correspond to the target outline exactly, because in-
formation which represents each partial area as exactly
as possible is a more effective quantifier of the features.
Then, the ellipse which is inscribed in the target outline
is used as the part model, so that shape information
represents the area as well as possible. Therefore, the
ellipse expanding method is employed, which draws an
inscribed circle in the outline and makes the long axis,
the short axis, the angle, and the central point change
to fit the outline. In our method, only the long and the
short axes are changed when the circle expands. The
central point is fixed on the stick, and the angle is fixed
at the same angle as the stick, so that the area in the
outline may be as accurate as possible.

The color histogram information needs to possess
the characteristic colors so that the color histogram
may become more effective as a feature. The system
selects therefore a central point at which the ellipse
includes the area of most characteristic colors.

First, the target area is expressed by the HSV table
color system, and a hue histogram is created. Next, the
system sequentially deletes hues of highest frequency,
so that about 70 or 80 percent of the total hues are
deleted. Then, rare colors, (that is, characteristic col-
ors) can be detected from the target area. In the case
of a goldfish, as shown in Fig. 3, the black portion of
the eyes and the light red portion of the fins and tail
are detected as the characteristic colors. It is neces-
sary to determine the parameters of the stick model
on the target area, because the central point of the el-
lipse is on the stick and the angle is the same angle
as the stick. The parameters are then determined as
described in section 2.2. Since any point can be the
central point as long as it is a point on a stick, two or
more candidates may exist. The ellipse is expanded in
each candidate, and then the number of the pixels of
the characteristic color in the ellipse is counted. The
candidate which has the highest number of counts is
determined as the central point of the ellipse, and the
size of the ellipse is also determined from the long axis
and the short axis. The ellipse model is completed by
averaging the central point, the long axis, and the short
axis in all sample images, because there is a possibility
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Figure 3. Area of the
characteristic colors

Figure 4. Object
model.

that an ellipse model generated from only one sample
image does not respond to various postures. The com-
pleted ellipse model is combined with the stick model,
becoming the object model as shown in Fig. 4. Note
that the hue histograms in the ellipses of all sample
images are averaged and earned before tracking.

The reliability of the ellipse is expressed by Wci.
Wci is based on the number of the pixels of the char-
acteristic colors in the ellipse, because the ellipse in-
cluding the area of most characteristic colors should
correspond exactly to the target.

The color histogram information has to be learned
before tracking. Therefore, the hue histograms in the
ellipses of all sample images are averaged, and used as
the learned histogram in tracking.

3. Tracking

In our method, the system tracks targets within the
framework of the tracking method with a probability
distribution [3]. The processing of tracking involves im-
age capture, hypothesis generation, probability evalu-
ation, probability distribution reform, probability dis-
tribution propagation, and then begins again with.

3.1. Probability evaluation

In order to track, the probability (which represents
the possibility of the target’s existence) must be de-
termined as described in [3]. The probabilities of tar-
gets are independent of each other. Here, if i identi-
fies a stick, the parameters of stick i are expressed by
P i = (x, y, θ)�. As mentioned later, unlike the param-
eter setup in 2.2, all sticks have three parameters for
each position and angle in tracking (see 3.3). Proba-
bility is determined by the following three evaluations.

(a) Matching of the stick model and the skeleton:

In the direction vertical to the skeleton, the param-
eters are estimated with sufficient accuracy, even if the
target is an object with insufficient features. The evalu-
ation function Ei

skl by the stick model and the skeleton
is:

Aobj

AobjAelp
i

AobjAelp
i Aelp

i

Figure 5. Area of an object and an ellipse.

Ei
skl(P

i) = N
(
Ai

stk(P i) ∩ Askl

)
/N

(
Ai

stk(P i)
)

(4)

Here, the area of stick i is Ai
stk, and the area of the

skeleton is expressed by Askl.

(b) Similarity of the hue histogram learned beforehand
and that observed in tracking:

The position of the portion of the target which has
the characteristic colors can be estimated with suffi-
cient accuracy, using the color information. The func-
tion gi

clr of the hue histogram is given by:

gi
clr(P

i) =
S∑

s=1

min[ Ii(s),M i(s) ] (5)

Here, the number of hues in the histogram is S, the
s-th hue (s = 1, 2, . . . , S) in the histogram is s, the
frequency of the hue histogram in the ellipse of stick
i observed in tracking is Ii, and the frequency of the
one learned beforehand is M i. The total frequency
of the hue histogram learned beforehand is φi

clr. The
evaluation function Ei

clr in the hue histogram is com-
puted by using gi

clr with φi
clr. Then, the ellipse with

the characteristic color becomes more reliable by using
the reliability Wci of the ellipse computed in section
2.3. The evaluation function Ei

clr is:

Ei
clr(P

i) = Wci × (
gi

clr(P
i) / φi

clr

)
(6)

(c) Matching of the area of the ellipse and the target:

If the configuration of each portion area of the target
is different, information about matching of the area is
more effective for estimating the target’s positions and
postures. The evaluation function Ei

area by matching
of the area:

Ei
area(P i) = N

(
Ai

elp(P
i) ∩ Aobj − Ai

elp(P
i) ∩ Aobj

)

/ N
(
Ai

elp(P
i)

)
(7)

Here, the area of the ellipse of stick i is Ai
elp, and

the area of the target is Aobj . As shown in Fig. 5,
Ai

elp ∩ Aobj is the matching area, and Ai
elp ∩ Aobj is

the non-matching area in the ellipse.
The probability Ci in stick i is combined the three

above-mentioned evaluation functions:

0-7695-2158-4/04 $20.00 (C) 2004 IEEE



Ci(P i) = WsklE
i
skl(P

i) + WclrE
i
clr(P

i)
+ WareaEi

area(P i) (8)

where, Wskl,Wclr, and Warea are the weights of each
evaluation function. The evaluation function of the
whole object model is expressed by C. C is computed
using each reliability given in section 2.2:

C(P ) =
n∑

i=1

W i
stkCi(P i) (9)

where, P (P 0,P 1, . . . ,P n) are all the parameters of
each stick.

3.2. Hypothesis generation

When the system starts tracking, it is necessary to
estimate the target parameters from only the initial
frame, because no prediction from a previous frame
can be made. In the initial frame, parameters corre-
sponding to the target are represented as a probability
distribution in parameter space, which we call the hy-
pothesis. The system tracks targets using hypotheses.

New objects may appear in the image after the ini-
tial frame. Then, since the area where hypotheses do
not exist in any of the target areas is the area where
new targets may appear, hypotheses should be gen-
erated in that region. We call the region where tar-
gets exist but are not initially apparent and the target
area in the initial frame a non-detected area. In order
to track a target in response to its emergence quickly,
non-detected areas is found at each frame.

In non-detected areas, parameters corresponding to
the targets have to be estimated. To do this, the
method given in section 2.2 is employed to match the
object model and the non-detected area. Parameters
estimated by matching are expressed by Φ. If Mter(Φ),
defined by formula (1), is larger than a threshold, a new
hypothesis is generated. Otherwise, the non-detected
area is not regarded as a target region.

Although Φ are those parameters represented by
three parameters in the standard stick and by one pa-
rameter in other sticks, all sticks can acquire three
parameters by using the connection of the sticks for
subsequent processing. These acquired parameters are
expressed by P .

3.3. Probability distribution reform

Although the parameters Φ represented by three pa-
rameters (x, y, θ) in the standard stick and by one pa-
rameter (θ) in other sticks are used when the object
model is generated, the parameters P represented by

three parameters in all sticks are used in tracking. The
reason for not using the same parameter setup is that
a probability distribution is used in tracking.

Only the standard stick’s parameters can be treated
independently in the parameter setup of Φ. There-
fore, a multi-dimensional parameter space ( (3+n−1)-
dimension, where n is the stick number) is generated. If
a probability distribution is generated in the parameter
space, the parameters in the probability distribution of
a particular stick will overlap each other; that is, their
redundancy will be high. This leads to the problem of
a waste of processing time.

On the other hand, since the parameters of each
stick can be treated independently in the parameter
setup of P , the three-dimensional parameter space of
the same number as the numbers of sticks is generated.
In this case, the parameters in the probability distri-
bution do not overlap each other, and redundancy is
low. Since processing time is shortened, this parame-
ter setup is suitable for real-time tracking. Moreover,
the search range for every stick can be expanded and
reduced, because variations of the probability distribu-
tion for every parameter space can be accommodated.

A propagated probability distribution does not re-
flect the information within a newly captured image.
To accurately reflect this information, the propagated
probability distribution has to be reformed through
feedback from the new image. In earlier methods, pa-
rameters which had the maximum probability were se-
lected as the center of the new probability distribution,
and the probability distribution was reformed with the
parameters. In our method, however, if the probability
distribution is reformed using parameters which have
the maximum probability as the center in each stick,
it may be impossible to maintain the connectivity of
sticks and the sticks will come apart, because the pa-
rameter setup P is used in tracking. Therefore, the
probability distribution has to be reformed while main-
taining stick connectivity.

We assume that stick i can be relied on, and it is
called the reliance stick rt. The parameters which have
the maximum probability in the probability distribu-
tion of rt are determined as the representative param-
eters of rt. Then, the parameters in the probability
distribution of stick a, which connects with rt, are re-
stricted, because it must connect with rt. As shown
in Fig. 6, the parameters of rt and a can then be de-
scribed by a tree structure with a root node and branch
nodes a1, a2, a3 which are the restricted parameters of
stick a. The node represents the probability of the pa-
rameters of each stick. Next, the parameters of stick b
which connects with a are restricted in the same way:
the parameters of a and b are described by node a1
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Figure 6. Tree structures representing the po-
sition and posture of an object and their prob-
abilities.

and branch nodes b1, b2. The parameters which con-
nect with a2, a3 are restricted, and they are described
by the tree structure. This processing is repeated until
all sticks are described by the tree structure. At this
point parameter tree which maintains stick connectiv-
ity is complete, with the reliance stick as the root (see
Fig. 6). This tree represents the parameters group
which is restricted by only the connectivity of sticks
at the stage at which the parameters of rt were deter-
mined.

Next, a tree is generated using stick i + 1 as the
reliance stick rt (that is, the root), and a third tree is
generated using stick i+2 as the root. Finally, multiple
trees are generated having each stick as the root.

When all trees are completed, the probability of the
parameters is added to each successive node further
from the root. Then, the furthest nodes from the root
have the total probability as shown in Fig. 6. The
parameters which have the maximum values in all top-
down paths (like the route expressed by the thick line
in Fig. 6) can be considered as the parameters which
correspond most accurately to the target among those
parameter groups which maintain the connectivity of
all sticks. Therefore, the probability distribution is re-
formed by placing these parameters at the center of the
probability distribution.

Applying this method, the probability distribution
can be reformed while maintaining the connectivity of
sticks. Moreover, if the tracking in a stick fails be-
cause of occlusions, the parameters which fail can be
recovered by relying on the parameters of other sticks.
There are two reasons for selecting all sticks as the re-
liance stick. The first is that uncertainty remains if
only one stick is selected as the reliance stick. The sec-
ond is that the possibility of tracking failure becomes
high when an occlusion occurs in the reliance stick.

3.4. Probability distribution propagation

The system propagates the probability distribution
for a current image in order to obtain the probability
distribution for a new image. The parameter setup of
Φ is used to maintain the connectivity of sticks. The
stick which has the maximum probability in all sticks
is selected as the standard stick. The time when the
current image is captured is expressed by tn, and the
time when new image is captured is expressed by tn+1.
The propagation of the probability distribution from
tn to tn+1 is computed by formula (10). Here, P i

peak

represents the peak of the probability distribution of
stick i.

P i
peak(tn+1) = P i

peak(tn)

+
tn+1 − tn
tn − tn−1

{P i
peak(tn) − P i

peak(tn−1)} (10)

Since the variance of the distribution is changed dur-
ing probability distribution reform, it is not changed
during propagation. The scale of the distribution is
also unchanged.

4. Experiments

To confirm the effectiveness of the proposed method,
we selected goldfish as non-rigid objects lacking suffi-
cient features, and conducted experiments with them.

4.1. Result of object model generation

Three hundred images (640×480pixel, YUV422, 16-
bit color) captured for 10 seconds at 30 fps were used as
the set of sample images for object model generation.
We selected a set of images in which the goldfish were
changing their postures, to learn the various postures.

In our study, the area of each goldfish was deter-
mined from red color information; in order to focus on
pose estimation from silhouettes of observed objects,
a background scene was simple and its color was very
different from that of a target as shown in Fig. 7 and
Fig. 9. After object model generation, the model with
nine sticks shown in Fig. 4 was generated. The reli-
abilities of the sticks representing the fin of a goldfish
were low. This is because self-occlusion occurred fre-
quently at the fin. In contrast, the reliabilities of the
ellipses representing the head were high, because the
black portions of the eyes were rarer than the red por-
tions.

4.2. Tracking experiments

We also conducted a tracking experiment using
video (30fps, two goldfish) which was different from
the sample images. Object models corresponding to
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the peak of probability distribution were described in
each frame during tracking. Only the stick models were
described (i.e., without the ellipse model), in consider-
ation of the ease of seeing the resulting images. The
weights Wclr,Wskl, and Warea of each evaluation func-
tion in formula (8) were set to Wclr = Warea = 2 Wskl,
so that the weights of color histograms and areas would
be high.

We conducted an experiment in which mutual oc-
clusions occurred between targets. Fig. 7 shows an
example of an acquired image sequence. In this ex-
periment, the frame immediately before the occlusion
occurred was used as the initial frame. Hypotheses A
and B were generated in the initial frame #40, and
the occlusion occurred in #52. Although hypotheses
A and B corresponded to the postures of the objects
in #62, they did not correspond accurately to the pos-
tures of the heads because of the occlusion in #67. In
#77, hypothesis A was recovered for the head, by rely-
ing on the information from sticks which had not been
affected by the occlusion. Hypothesis B was also re-
covered for the head, in the same way, in #82. Thus,
even if the system cannot estimate the position and the
posture of the targets accurately because of occlusions,
it can estimate the targets accurately by recovering at
a later point.

Transitions of the peak probability distribution of
hypotheses A and B are expressed by the line graphs
in Fig. 8. Frames in which the color is bright in the
background represent estimations which failed. Judg-
ment of estimation failure was made subjectively; the
standards for judgment were whether all sticks were
within the target areas, and whether all sticks corre-
sponded to the posture of the targets.

Fig. 9 shows an example of estimation failures. Hy-
pothesis A failed the estimation because of the occlu-
sion and the change of posture in #66. Therefore, the
probability was low around #66, as shown in Fig. 8
(top), but it was recovered by information regarding
sticks which had not been affected by the occlusion in
later frames. In #108, hypotheses A and B failed the
estimation because of the occlusion, and in #136 hy-
pothesis B failed the estimation because of the change
of posture. Therefore, although the probabilities were
low in these frames, we could recover the failure in later
frames, as shown in 8 (top) and 8 (bottom). In #55,
although hypothesis B failed the estimation because
of the occlusion, the probability did not become low.
It was considered that the head part of hypothesis B
corresponded to the head of the goldfish of hypothesis
A.

In this experiment, the rate of successful estimation
was 87% in hypothesis A, 74% in hypothesis B, 81% on

#40 #52

#62 #67

#77 #82

Figure 7. Experimental results.

the average. Judgments of successful estimation were
performed subjectively, as above. We judged a video of
10 seconds (300 frames), and occlusions occurred in 50
frames. Since the goldfish of hypothesis B was covered
by that of hypothesis A, a difference occurred in the
rate of successful estimation of hypotheses A and B.

We conducted a further experiment which the tar-
get size changed with the zoom function. In previ-
ous methods, since an object model has to be created
subjectively, a great deal of labor is required. In our
method, however, an object model corresponding to
a change of target size could be generated automati-
cally from sample images. The system tracked targets
using an object model in which occlusions occurred.
The same result was also obtained in this experiment,
and we thus confirmed the effectiveness of the proposed
method.

5. Conclusions and comments

We have proposed a non-rigid-object tracking
method, with an object model generated automatically
from a set of sample images. Moreover, we selected
goldfish as non-rigid objects lacking sufficient features,
conducted tracking experiments with them, and con-
firmed the effectiveness of our proposed method. Fu-
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Figure 8. Transitions of the probability of hy-
potheses A (top) and B (bottom).

ture work will include improvements in the estimation
accuracy, processing time, and the flexibility of our
method, by testing objects other than goldfish.

This work was supported by the PRESTO program
of Japan Science and Technology Agency (JST).
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