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Abstract

Human pose estimation is a challenging task due to significant appearance variations. An ensemble of models, each of
which is optimized for a limited variety of poses, is capable of modeling a large variety of human body configurations.
However, ensembling models is not a straightforward task due to the complex interdependence among noisy and
ambiguous pose estimation predictions acquired by each model. We propose to capture this complex interdependence
using a convolutional neural network. Our network achieves this interdependence representation using a combination
of deep convolution and deconvolution layers for robust and accurate pose estimation. We evaluate the proposed
ensemble model on publicly available datasets and show that our model compares favorably against baseline models

and state-of-the-art methods.
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1. Introduction

Human pose estimation is challenging due to the wide
variety of appearances that can result from pose varia-
tions. One way to alleviate the complexity is to cluster
a training dataset so that a set of expert models can be
learned. Reducing the variation within each subset facili-
tates learning the expert model to accurately estimate the
joint locations under a particular pose configuration. By
combining each of the expert models from one of the het-
erogeneous variations (i.e., different types of pose vari-
ations), the ensemble of the expert models can capture
complicated appearance variation. We call these hetero-
geneous expert models pose-modality (PM) models. For
example, given an input image, the configurations of dif-
ferent body parts may be correctly localized using differ-
ent PM models, e.g., PM models 1 and N correctly lo-
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calize the right and left lower arms, respectively (see (b)
Testing stage of Figure 1).

In using the ensemble of PM models, it remains un-
clear how to determine a final estimation from diverse re-
sponses of PM models. Existing approaches combine the
responses either by simply selecting the most confident
response [1] or averaging over all the responses [2, 3, 4].
Such heuristics, however, do not capture the interdepen-
dency among the responses of PM models.

In this paper, we present a PM-ensemble (PME) model
to infer body configurations by modeling the interdepen-
dence among the responses of PM models. As shown in
Figure 1(a), the model training process consists of three
stages. At stage 1, the training samples are partitioned
into subsets based on their similarity in a pose space. At
stage 2, each PM model is trained using training samples
from each cluster. At stage 3, we learn the PME model
to incorporate all the responses to make the final estima-
tion. Figure 1(b) shows an example of the inference pro-
cedures. Given an input image, we use the learned PM
models to localize body joint positions independently. As
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Figure 1: Overview of the proposed ensemble model. (a) Training stage. At stages 1, 2, and 3, (1) dataset clustering based on pose similarity, (2)
PM model training using each pose cluster, and (3) PM-ensemble ConvNet training for integrating the responses of the PM models are performed,
respectively. (b) Testing stage. Given an input image, we first use the trained PM models to estimate the joint heatmaps. The PM-ensemble model
then integrates the responses from all models to localize the joint positions.

the PM models are trained with disjoint sets of training
samples, the resultant joint heatmaps are typically diverse.
Our PME model can selectively combine the correct pose
predictions and merges them to the final estimation.

We note while it may be feasible to train a large net-
work in an end-to-end fashion without pre-clustering, in
practice it is rather challenging as it requires a large
amount of manually annotated images, highly computa-
tional load and memory. The separated PM models can
be trained in an efficient distributed manner which is bet-
ter in terms of computational cost and memory capacity.
In addition, it facilitates analyzing the network modules
for pose estimation.

The main contributions of this work are as follows.
First, we propose the PME model for human pose esti-
mation that is capable of merging diverse responses from
heterogeneous PM models (Section 3). We design the
PME model so that (i) it can better model the inter-
dependence among the diverse responses than previous
clustering-based methods [35, 6, 7, 8, 9] and (ii) it pro-
vides high-precision joint localization without reducing
its spatial resolution (Section 3.2). Second, we propose
PM-dependent clustering of training images for individual
PM modeling (Section 3.1). The clustering strategy is es-
sential for making PM models heterogeneous, while other

CNNs for ensembling [2, 4, 10, 9] apply the same set of
training data (i.e., with no clustering) to expert model(s).
Third, we propose a two-stage training scheme to fine-
tune each PM model for capturing a limited pose variety
while avoiding overfitting (Section 3.1).

The novelty of this work lies also in a practical and ef-
ficient design for pose clusters using the ensemble net-
work. While some components are known, it requires
the proposed algorithmic design to integrate the mod-
ules. While it is feasible to train a large network without
pre-clustering in the end-to-end fashion, in practice it is
very challenging as it requires a large set of manually an-
notated images, considerable memory and computational
costs and getting stuck in bad local minima. More impor-
tantly, we show the advantages of the proposed models
over the end-to-end approaches.

e The proposed method can represent the interdepen-
dency among complex poses by a huge network con-
sisting of multiple PM models and the ensemble
model. Such a huge network cannot be implemented
in the end-to-end fashion on limited memory on the
GPU. But, the separated PM models and the ensem-
ble model can be trained in an efficient, distributed
manner in terms of computational cost and memory
capacity. In fact, memory capacity on the GPU at



our disposal (NVIDIA Titan X 12GB) is fully occu-
pied for training only the ensemble model for 10 PM
models.

o Through analyzing the intermediate heatmaps of the
PM models (e.g., how are they different? how is each
one useful? how are they merged?), we can better
understand each model and improve the overall per-
formance.

o We also validate whether the performance can be im-
proved by updating the weights of PM models with
the ensemble model. Our results show that the per-
formance remains the same or decreased in some
cases. We attribute this due to the difficulty in end-
to-end training by the current training scheme.

2. Related Work

Pictorial structure models (PSMs).. PSMs have been ap-
plied to human pose estimation [11, 12, 13, 14, 15, 16,
17, 18, 19] because of their ability for efficient and global
optimization. Many extensions have been proposed to im-
prove PSMs, e.g., discriminative training [20, 21], graph-
ical models with loops [22, 23], coarse-to-fine and hier-
archical modeling [24, 25, 26], appearance learning be-
tween parts [27, 28], and a conditional random field with a
dense graph representation in [29]. While global optimal-
ity of the PSM is attractive, its ability to represent com-
plex relations among parts is limited compared to deep
neural networks.

ConvNet-based pose estimation.. ConvNets have re-
cently been applied to pose estimation. Chen and
Yuille [28] use a ConvNet to learn the appearance of parts
within a PSM framework. In addition to appearance mod-
eling, a ConvNet can also model the distribution of joint
locations. For example, a ConvNet can directly estimate
the joint locations [30] or estimate the pixel-wise likeli-
hood of each joint location as a heatmap [31, 32]. Re-
cent approaches explore sequential structured estimation
to iteratively improve the joint locations [11, 33, 34, 35].
Pfister et al. [9] extend the ConvNet for pose estimation
in still images to video by combining warped responses
across multiple frames using optical flow. Our approach
builds upon such state-of-the-art models. Specifically, we

use [9] and [35] as our PM model for upper-body and full-
body pose models, respectively. In contrast to existing
work that focuses on improving the performance of one
single model, our goal is to develop an ensemble method
that can merge responses from multiple PM models.

Multi-modality of human poses.. In [36], different types
of visual cues such as part appearance and geometric de-
formation between parts are integrated into a neural net-
work for human pose estimation. Non-maxima suppres-
sion is extended in order to integrate multiple pose hy-
potheses in [37]. However, only one single model is
trained using all the training data. On the other hand,
Johnson and Everingham [5, 6] and Sapp and Taskar [7]
train multiple models with clustered training data. Similar
to [3, 6, 7], we also cluster the training dataset for learning
PM models. The main difference lies in that our approach
integrates the outputs of all PM models based on the inter-
dependency among the models, while [5, 6, 7] selects only
the model with the highest confidence. Poselets [8] also
adopt pose clustering to localize multiple target body con-
figurations. While our PM models are trained in a similar
way, our primary focus is on how to effectively combine
the model responses rather than localization of each body
part using one single model.

Ensemble of neural networks.. Model ensembling is
widely used in machine learning and recently in the con-
text of ConvNets. Ciresan et al. [2] apply ConvNets mul-
tiple times and average over their estimations for image
classification. Agostinelli et al. [4] address image denois-
ing by weighted-average over the estimations from multi-
ple ConvNets, each of which is trained to remove a partic-
ular type of images noise (e.g., Gaussian, speckle). In the
context of face verification, Sun et al. [10] show that us-
ing additional neural network layers to combine multiple
ConvNets can further improve the recognition accuracy.
The ensemble of neural networks has also been used for
human pose estimation. Pfister et al. [9] merge the esti-
mated body configurations from adjacent video frames us-
ing a convolutional layer. In each frame, the body config-
uration is estimated by the same model. Here, using a sin-
gle convolution layer as an ensemble model may be suf-
ficient for merging similar pose estimations (as the pose
configurations in the adjacent video frames are estimated
by the same model). However, our PM models may gener-
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Figure 2: Visualization of the mean poses and the scatter plots of the arm poses from each cluster. Each column represents each cluster. The
first five columns show clusters obtained by clustering pose based on right arm positions. The rest five columns are for the left arm. While the
configurations of the upper arm are similar within each cluster, the lower arm configurations are significantly different. The PM models trained
using the training samples in the respective cluster may thus have diverse estimations for a given image.

ate diverse pose estimations as the PM models are trained
with disjoint sets of training samples. The simple ensem-
ble method in [9] may fail to capture this diversity.

3. Ensemble model for human pose estimation

3.1. PM models

The main idea in PM modeling is to estimate a particu-
lar body configuration with high accuracy (even at the ex-
pense of false localization for other types of body config-
urations). We show in Figure 2 several examples of such
pose configurations clustered based on the arms. Each PM
model is fine-tuned over the respective clustered training
samples.

With each trained PM model, we obtain the heatmap
of each joint location given an input image. As demon-
strated in [9], the multi-modality (i.e., high confidence at
multiple spatial locations) in the heatmap allows us to bet-
ter capture the ambiguity of the estimated joint locations
compared to directly regressing the 2D joint coordinates.
In our PME model, therefore, heatmaps are fed into the
PME! because the interdependence among joint locations

I'While pose estimation models used in our experiments (i.e., [9] and
[35]) produce the heatmap of each joint location, many other models
directly infer the joint (x, y) locations. A heatmap can be produced from
the joint location with the Gaussian distribution centered on the location.

estimated by multiple PM models is complex and ambigu-
ous.

For effective PM modeling, we discuss two important
aspects: (1) data clustering strategy and (2) model fine-
tuning.

Clustering of training data. Clustering pose samples us-
ing a full-body configuration (as done in [5, 6]) produces
a larger variation in each pose cluster. The large variation
in the cluster prevents the PM model from learning par-
ticular body configurations. To facilitate the PM model
learning, our strategy for pose clustering is to use a par-
tial body region as a pose feature. In our implementa-
tion, the pose feature is computed from the configuration
of arms, i.e., shoulder, elbow, and wrist. This is because
the pose configuration of the arms is larger than that of
other body parts and so appropriate for making PM mod-
els more heterogeneous. To obtain tighter clusters, we
apply pose clustering to all training data independently
using each of the left and right arms. Given K clusters in
each arm, we obtain 2K clusters in total. Our experiments
suggest that pose clustering using each of the left and right
arms achieves improved accuracy than pose clustering us-
ing the both arms. We attribute this to the smaller varia-
tion of human poses in a partial body region.

We use the K-means clustering algorithm with a feature
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Figure 3: (a) The parametric pooling by Pfister et al. [9] for upper-body pose estimation. (b) PME sl, (c) PME s2, and (d) PME s3. (e) PME
ConvNet + DeconvNet (PME-D). K denotes the number of PM models. Here, “conv” and “deconv” in each box represents convolutional and
deconvolutional layers, respectively. In the box of the convolutional and deconvolutional layers, the first two numbers in the second row of the box
represents height and width of the filter size and the third number the size of the output feature map. The last row shows the stride of the filter.

vector f, of the form:

fp = (sinf,cos by, --,sinby,cosby), (1)
where N is the number of joints in a feature vector (i.e.,
N = 2 in our experiments) and 6 denotes an angle between
adjacent body parts. For example, 6, is an angle between
two line segments defined by a neck, a shoulder, and an
elbow, and 6, defined by a shoulder, an elbow, and a wrist.

The mean poses and scatter plots of the lower and up-
per arms in each cluster for both arms with K = 5 are
shown in Figure 2. It can be seen that tight clusters can be
obtained in the lower arms as well as in the upper arms.

While this pose clustering is required to make PM
models with tighter pose clusters, human poses near the
boundaries of neighboring clusters are similar to each
other. By distributing these pose data to the neighboring
clusters with overlapped samples, the PME can represent
more complex interdependency among the PM models.
The amount of overlap is determined based on the trade-
off between the tightness of clusters and the number of
training samples in each cluster. The effect of overlapped
samples is discussed in Section 4.6.

Training PM models. The PM model training procedure
at stage 2 is shown in Figure 1. As the number of train-
ing images for each PM model is reduced through cluster-
ing, the model training may be prone to overfitting com-
pared with the one with all training images. Although we
do expect that a PM model overfits to its pose cluster, a
small number of training images often result in excessive
overfitting in deep neural networks. Even when sufficient
training images are given, the training images that are not
in the pose cluster can still provide useful information for
the PM model (e.g., the local appearance of each body
joint).

As a result, we use two approaches in training each
PM model: fine-tuning and dropout. We first pre-train
a generic pose estimation model using the entire training
dataset. We then fine-tune the PM model from the ini-
tial pre-trained model using training images in each clus-
ter. To further alleviate overfitting, we apply a variant of
dropout [38, 32] for regularizing the training. We find that
this is essential to prevent excessive overfitting and boost
the generalization performance of a PM model trained on
a small number of images in each cluster.



3.2. PM-ensemble ConvNet

PM ensembling. We now present the PM-ensemble
model to merge the responses from multiple PM models,
as shown in Figure 1. In the training stage (stage 3 in Fig-
ure 1), we train the PME model to minimize the loss be-
tween an estimated heatmap and a ground-truth heatmap
for each joint k over training data N. Denote a set of train-
ing images and its ground-truth joint locations as {X, y}.
We minimize the network weights W by

mui/n Z Z ||H,'jk(X, W) - Hl',k()’)llz

(X.y)eN i,jk

@

Here, H;j (X, W) denotes a likelihood on image coordi-
nates (i, j) of kychannel in the estimated heatmap given
the network parameters, W, of the PME. The heatmap
Hlfjk(y) is the ground-truth joint location likelihood as in
[9].

Figure 3 shows the architecture used in the proposed
PME. Unlike the simple parametric pooling [9] (Figure 3
(a)), we use a deeper model to encode the complex rela-
tionships among the diverse responses of the PM models.
Compared to the model in [9] that uses a convolutional fil-
ter with kernel size 1 x 1, we use larger spatial kernels of
Tx7,9%9,13x 13 and 17 X 17 to capture spatial relation
among PM models. We show three variants of the PMEs
sl, s2, and s3 in Figure 3 (b), (c), and (d), respectively.

Similar to other heatmap-based methods, we obtain the
human pose from the fused heatmaps by finding x-y coor-
dinates with the max values.

Deconvolution for improved localization. While the
PME model is capable of integrating the diverse responses
from PM models, its performance depends on the spatial
resolution of the heatmaps of the PM models. For exam-
ple, the spatial resolution of each heatmap is lower than an
input image due to the cascade of pooling layers in pose
estimation by ConvNets (e.g., [9] and [35], which are used
in our experiments). Such a low-resolution heatmap does
not allow accurate pose estimation in the original resolu-
tion.

To address this issue, we add deconvolutional layers to
the PME, as shown in Figure 3(e). The effect of the de-
convolution layers has been demonstrated in other prob-
lems such as image segmentation [39] and image synthe-
sis [40, 41]. We alternate the convolution and deconvolu-
tion layers in the proposed model and find that this design

generates a smoother heatmap. We call the PME model
with deconvolution layers the PME-D.

4. Experiments

4.1. Implementation details

We use the models in [9] and [35] as our upper-body
and full-body PM models, respectively. In all experi-
ments, the entire training dataset is partitioned into K = 5
clusters for the pose configuration of each arm. The total
number of clusters (i.e., the number of PM models) is 10;
5 for the right arm and 5 for the left arm.

The ConvNet of the PME model consists of 13 convo-
lution, 12 activation, and 2 pooling layers. After indepen-
dently fine-tuning each PM model, we fixed the weights
of the PM models and only update the weights of the
PME. We avoided end-to-end learning with all PM mod-
els and the PME model because it is practically difficult
to optimize a huge network consisting of all the models
due to difficulty in avoiding local minima as well as due
to a memory issue. Actually, the deep PME models (i.e.,
PME s3 and PME-D) for the full body could be trained
only if the batch size was eight even in Titan X 12 GB.
The proposed method was implemented with Caffe [42]
in accordance with two baselines [9, 35], but its current
version has no function for a distributed memory usage.
However, we consider the modularity of the models to be
one of advantages for independent and efficient learning
of a huge network. While we investigated the effect of
end-to-end learning with the shallowest PME model (i.e.,
PME s1) with fewer clusters (i.e., K = 3 clusters)?, further
investigation for complex models should be important fu-
ture work.

4.2. Datasets

We validate the performance of the proposed ensemble
method using publicly available datasets: FLIC [7], BBC
pose [43], LSP [6], MPII [44] datasets.

In the FLIC-full dataset [7], images are collected from
30 Hollywood movies. The upper-body joint positions are
annotated. For training, we use the FLIC-plus dataset [31]
which is a subset of the FLIC-full dataset with around

2See Effect of End-to-end Learning in Section 4.6



17K training images. For testing, we use a standard test
set of 1000 images. As there are multiple people in several
images of the FLIC dataset, we use the ground-truth torso
box to crop out an image of a target person for evaluation.

In the BBC pose dataset [43], images are collected from
20 videos from the BBC. The training frames are anno-
tated in a semi-automatic manner using the pose estimator
of Buehler et al. [45]. In our experiments, we use about
600K frames for training and 1000 images for testing.

While the FLIC and BBC datasets include upper-body
human pose data, the LSP and MPII datasets provide data
for the full-body human pose. The LSP dataset [6] con-
sists of 1000 training and 1000 testing images collected
from the Internet. In addition, extra 10000 images are also
given for a training purpose in the LSP extended dataset.
The MPII human pose dataset [44] contains around 40K
human poses observed in 25K images.

4.3. Evaluation protocols

We adopt three metrics for evaluation: 1) Percentage
of Correct Parts (PCP) and 2) Probability of Correct Key-
point (PCK), and 3) Percentage of Detected Joints (PDJ).

For PCP [46], each body part is represented as a line
segment between its two joints. The estimated location of
a body part is considered as correct when both of the two
joints locate within a certain fraction @ of the length of the
limb from their ground-truth locations. We set @ = 0.5 in
all the experiments. We evaluate the PMEs using the strict
PCP metric [46, 47] with person-centric annotations [48].

In PCK [21], the detection is correct if the distance
between the estimated and the ground-truth joints is less
than a certain fraction 8 = 0.5 of the full-body size.

The PDJ metric [7] aims to evaluate the performance of
the model under different precision through normalizing
the location precision by the diagonal length of the torso.

4.4. Comparison to the state-of-the-art methods

Upper-body pose estimation. Tables 1 and 2 show the
quantitative comparisons against several state-of-the-art
pose estimation algorithms on the FLIC and BBC pose
datasets, respectively. In both tables, the baseline
model [9] has the same ConvNet architecture as our PM
model and is trained using all the training data.

The proposed PME s3 outperforms all existing methods
in FLIC dataset in terms of the mean PCP. Our results

Table 1: Comparison to the state-of-the-art pose estimation algorithms
in terms of PCP on the FLIC dataset [7]. Red: the best, Magenta: second
best performance. See Figure 11 also for more detailed comparison with
more state-of-the-art methods [35, 49].

Method | U.Arms L. Arms [ Mean
Baseline [9] 96.9 85.7 91.3
Yang et al. [50] 98.1 89.5 93.8
Chen et al. [28] 97.0 86.8 91.9
Tompson et al. [31] 93.7 80.9 87.3
Tompson et al.[32] 90.0 78.5 84.3
Sapp et al. [7] 84.4 52.1 68.3
PME s3 (Ours) 97.8 90.2 94.0

Table 2: Comparison to the state-of-the-art pose estimation algorithms
in terms of PCP on the BBC pose dataset [43]. Note here we only use
still images as inputs. Red: the best, Magenta: second best performance.

Method | U.Arms L. Arms | Mean
Baseline [9] 75.4 75.1 75.3
Charles et al. [43] 89.1 75.8 82.5
Ramanan et al. [21] 88.7 73.9 81.3
Buehler et al. [45] 87.2 74.4 80.8
PME s3 (Ours) 89.3 77.2 83.3

compare favorably against the state-of-the-art algorithms,
particularly on the lower arm.

We also compare the PME model with the state-of-the-
art approaches in BBC pose dataset, as shown in Table 2.
Similar to the results of the FLIC dataset, our method
compares favorably against the state-of-the-art methods.

Full-body pose estimation. Table 3 shows the compara-
tive evaluation results using PCK on the LSP. Unlike the
results shown in Tables 1 and 2, each result is obtained
with a different training dataset in Table 3. Comparing
with other methods that use the same set of training data,
our PME model demonstrates competitive performance.
In particular, our PME outperforms its baseline [35] in
the mean score for both sets of training data.

We also evaluates the proposed method on a larger full-
body pose dataset, the MPII human pose dataset. Table
4 shows the comparative evaluation results using PCKh.
While very recent models [53, 54, 55] are better than our
PME, it outperforms the baseline [35], which was trained
with more data.



Table 3: PCK-0.2 evaluation on the LSP dataset. Each result is obtained on different training datasets specified in the brackets. The best score
obtained on each dataset is colored by red in each column. Methods marked with (*) and (**) were trained on “MPII, LSP, and LSP-extended
datasets” and “LSP and LSP-extended datasets”, respectively. In the former case, the score of PME s3 (Outs) is colored by blue if it is greater than

or equal to the baseline [35].

Method [[ Head  Shoulder Elbow Wrist Hip Knee Ankle | Mean
Pishchulin et al. [S1] (*) 97.0 91.0 83.8 78.1 91.0 86.7 82.0 87.1
Insafutdinov et al. [52] (¥) 97.4 92.7 87.5 84.4 91.5 89.9 87.2 90.1
Chue et al. [53] (*) 98.1 93.7 89.3 86.9 93.4 94.0 92.5 92.6
Chou et al. [54] *) 98.2 94.9 92.2 89.5 94.2 95.0 94.1 94.0
Chen et al. [55] *) 98.5 94.0 89.8 87.5 93.9 94.1 93.0 93.1
Baseline [35] *) 97.8 92.5 87.0 83.9 91.5 90.8 89.9 90.5
PME s3 (Ours) *) 97.6 95.3 87.9 81.2 97.8 90.8 87.8 91.2
Yu et al. [56] (**) 87.2 88.2 82.4 76.3 91.4 85.8 78.7 84.3
Baseline [35] (%) 96.9 97.1 80.4 75.1 86.5 83.2 81.0 84.3
PME s3 (Ours)  (*%) 92.0 92.0 87.3 77.8 97.4 87.4 77.1 87.3

Table 4: PCKh-0.5 evaluation on the MPII dataset. Methods marked with (*) were trained on “MPII, LSP, and LSP-extended datasets”, while others
were trained with only “MPII”. Red scores mean the best ones in each column. The score of PME s3 (Outs) is colored by blue if it is greater than

the baseline [35].

Method [[ Head  Shoulder Elbow Wrist Hip Knee Ankle | Mean
Pishchulin et al. [S1] (*) 94.1 90.2 83.4 77.3 82.6 75.7 68.6 82.4
Lifshitz et al. [57] 97.8 93.3 85.7 80.4 85.3 76.6 70.2 85.0
Gkioxary et al. [58] 96.2 93.1 86.7 82.1 85.2 81.4 74.1 86.1
Insafutdinov et al. [52] 96.8 95.2 89.3 84.4 88.4 83.4 78.0 88.5
Bulat & Tzimiropoulos [59] 97.9 95.1 89.9 85.3 89.4 85.7 81.7 89.7
Newell et al. [49] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9
Chu al. [53] 98.5 96.3 91.9 88.1 90.6 88.0 85.0 91.5
Chou et al. [54] 98.2 96.8 92.2 88.0 91.3 89.1 84.9 91.8
Chen et al. [55] 98.1 96.5 92.5 88.5 90.2 89.6 86.0 91.9
Baseline [35] *) 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5
PME s3 (Ours) 97.7 95.8 90.1 85.6 88.8 84.8 81.7 89.6

4.5. Comparison to other ensemble approaches

We investigate the importance of ensembling approach
on both FLIC and BBC pose datasets in Table 5. Com-
pared to the simple ensemble approach such as averag-
ing over multiple outputs (average pooling in Table 5) and
parametric pooling using a single convolution layer used
in the baseline [9], we can see that the PME model outper-
forms these conventional ensemble approaches by a large
margin. This suggests that a deeper ConvNet architecture
with a cascade of convolutional layers with large kernels
is critical to merge diverse estimations from PM models
and represent the spatial contexts of body joints.

For the FLIC dataset, PME s3 outperforms the base-

line [9] by 2.8% in PCP3. The improvement over [9] on
the lower arm is particularly significant, with 4.5% im-
provement in PCP. In BBC pose dataset, PME s3 im-
proves the baseline by 14.5% in PCP (upper arm).

Improvement cases. We show several qualitative exam-
ples in Figure 4. Figure 4 (a) and (d) are the results of
the average pooling, and results shown in (b) and (e) are
obtained from PME s3. While the same set of heatmaps is
provided to the average pooling and the PME s3, the av-
erage pooling fails to correctly localize the right wrist in

3See Section 4.6 for comparisons among the variants.



Table 5: PCP for different ensemble approaches on the FLIC dataset and the BBC pose dataset. PCP on upper and lower arms, which are difficult
to be localized, are shown. Red: the best, Magenta: second best performance.

FLIC BBC pose
Method [[ U Arms  L.Arms [ Mean [[ U.Arms L. Arms [ Mean
Baseline [9] 96.6 85.7 91.2 75.4 75.1 75.3
Average Pooling 96.7 86.7 91.7 75.6 73.6 74.6
Parametric Pooling [9] 96.9 87.2 92.1 74.6 73.8 74.2
PME sl 97.0 87.5 92.3 74.5 72.5 73.0
PME s2 97.7 89.8 93.8 83.1 76.6 79.9
PME s3 97.8 90.2 94.0 89.3 77.2 83.3

(a) due to the self-occlusion (occluded by the left arm). In
(d), the average pooling confused the left elbow with the
right one possibly because the self-occlusion of the left
wrist gives a negative impact on localizing the left elbow.
On the other hand, our method successfully localizes the
right wrist in (b) and the left elbow in (e). Figure 4 (c)
and (f) visualize the five heatmaps of the joints mislocal-
ized by the average pooling. It is clear that several peaks
are observed in the heatmaps for both images. The distri-
butions of the peaks differ between the heatmaps, which
demonstrate the heterogeneous properties of the PM mod-
els. It can also be seen that erroneous peaks are observed;
strong peaks at the right elbow in (c) and (f). These er-
roneous peaks resulted in mislocalization in the average
pooling. The correctly-localized joints are suggested by
the PME model where each PM model focuses on a spe-
cific pose configuration such as the joint locations shown
in Figure 4 (b) and (e).

More qualitative results on the FLIC [7], BBC [43], and
LSP [6] datasets are shown in Figures 6, 7, and 8, respec-
tively. These figures show the ground-truth of a human
pose, the pose estimation results of the proposed methods,
and the heatmaps of one joint. The joint whose localiza-
tion is failed in several methods is selected for heatmap
visualization. It can be seen that peak distributions vary
among the heatmaps. This variation results in difficulty
in pose estimation by the pose-modality-ensemble (PME)
model. The results of PME s3 and PME-D are better than
PMEs s2 and s1 with shallow layers. In comparison be-
tween results for the upper-body and full bodies, further
difficulty arises due to complex nature of a human pose
in sports (e.g., self occlusion) in the full body estimation
(i.e., LSP). Due to this difficulty, the heatmap variation in

the LSP is larger than in the FLIC and the BBC pose. In
samples shown in Figs. 8, our deeper models (i.e., PME
s3 and PME-D) can cope with these difficulties and local-
ize all joints well.

Failure cases. Two typical failure cases by the PME
model are shown in Figure 5. As shown in Figure 5 (a)
and (d), the average pooling correctly localizes the right
elbow and wrist, respectively, while PME s3 shown in (b)
and (e) does not perform well. While the mislocaliza-
tion in (b) is not severe, the estimated right elbow is far
from its ground truth in (e). This significant error may be
caused by the larger distributions of the heatmaps as the
distributions are significantly larger than other heatmaps
shown in Figure 4. Such a set of large distributions of
the heatmaps cannot be captured by the PME model and
causes mislocalization, while several strong peaks around
the right elbow may result in its correct localization the
simple average pooling.

4.6. Detailed analysis

Computational Cost. For full-body pose estimation, the
computational time of the proposed method is slightly
more than the baseline [35]. Let 7 be the training time
of the baseline. In our experiments, the training times for
fine-tuning each PM model and the ensemble model were
at most less than 0.057 and 0.17". Since all PM models
can be fine-tuned in parallel, our method needs additional
15% computational time in total for training. We believe
this subtle increase in computational cost is acceptable to
get 0.7% and 1.1% accuracy gains on the LSP and MPII
datasets, respectively.



(b) PME 3 (Ours)

(a) Average pooling

(c) Heatmaps of the right wrist

(e) PME s3 (Ours)

(d) Average pooling

(f) Heatmaps of the left elbow

Figure 4: Two improvement cases by the PME model. The positions of
the estimated wrist, elbow, and shoulder are indicated by red, blue, and
yellow circles, respectively. For presentation clarity, only one arm is
visualized. The ground truth of joints mislocated by the average pooling
(i.e., the right wrist and the left elbow in upper and lower examples,
respectively) are indicated by stars and the heatmaps of these joints are
also shown.

Effect of network depth and kernel size. We examine the
effect of different depth and kernel size using three vari-
ants of PME: 1) PME sl (two convolutional layers with
9 x 9 kernel), 2) PME s2 (five convolutional layers with
7 x 7 and 13 X 13 kernels), and 3) PME s3 (seven convo-
lutional layers with 7 X 7, 13 x 13, 17 X 17 kernels). As
shown in Table 5, a deeper architecture with larger ker-
nels have better performance. These results suggest that
the network capacity is the essential to explicitly model
interdependency among the responses of each PM model.

Effect of the number of PM models. In Figure 9, we inves-
tigate the effect of the number of PM models in the ensem-
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b) PME 53 (Ours)

(c) Heatmaps of the right wrist

(a) Average pooling

(f) Heatmaps of the right elbow

Figure 5: Two failure cases by the PME model. The average pooling
is able to localize the right wrist and elbow as shown in (a) and (d),
respectively, whose heatmaps are shown in the figure, while the PME
model in (b) and (e) does not perform well.

ble using FLIC dataset. We plot the performance in PCP
under different numbers of clusters K = [1,2,3,4,5,6],
which is the number of PM models for one arm. As shown
in Figure 9, increasing the number of PM models im-
proves the results. However, the improvement saturates
when we use more than K = 4 models. We attribute this
to the decreasing number of training samples in each clus-
ter when we use more clusters. Based on the results, we
use K = 5 in our experiments (10 models in total).

While the effect of pose clusters is also empirically ana-
lyzed in [60], their results show that the optimum number
of clusters is around 100 in the Human3.6M dataset. The
difference between [60] and our case may be caused by
the complexity in 3D pose estimation as well as the large
number of data in the Human3.6M dataset. For a greater
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Figure 6: Sample results on FLIC dataset. Heatmaps for each test image
show those of a joint, in which the heterogeneous properties of differ-
ent PM models can be observed, whose localization is failed in several
methods.

number of training images, in particular for complex full-
body poses, more pose clusters (i.e., greater than K=5)
may work better also in 2D human pose estimation.

Effect of overlaps among pose clusters. The proposed
PME model is evaluated using pose clusters with different
overlaps. Figure 10 shows the results of PCK-0.2 evalu-
ation with different overlaps among pose clusters on the
LSP dataset. The overlaps are adjusted so that cluster ¢
includes a pose sample d in another cluster if the distance
between the centroid of ¢ and d is less than Ld,,,,. In Fig-
ure 10, L is a parameter on the x-axis, and d,,,,, is the dis-
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PME sl
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truth
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Heatmaps of left shoulder

PME-D PMEs3 PMEs2 PMEsl

Heatmaps of right shoulder

Figure 7: Sample results on BBC pose dataset. Heatmaps in each row
show those of a joint whose localization is failed in several methods.

tance between the centroid of ¢ and the most distant pose
data within ¢. Since we can see a peak around L = 1.2,
L = 1.2 is used in all experiments for full-body pose esti-
mation. Overall, the proposed algorithm performs better
when a small amount of overlapped samples are included,
and performs robustly within a reasonable range of over-
laps.

Effect of Deconvolution for improved localization. To
show the effect of deconvolution layers, we evaluate the
PME (PME s3), the PME-D, the baseline, and several
state-of-the-art methods [49, 35, 50, 32, 7] using the PDJ
scores (Figure 11). While the state-of-the-art methods
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Figure 8: Sample results on the LSP dataset. Heatmaps in each row]show those of a joint whose localization is failed in several methods.
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Figure 9: Effect of the number of PM models. Increasing the number of
the PM models improves the PCP performance.
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Figure 10: PCK-0.2 results obtained from PM models trained by pose
clusters having different overlaps. We evaluate L, which determines the
overlap between neighboring pose clusters, between 1.0 and 1.5 with an
interval of 0.05.
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Table 6: PDJ scores on the FLIC dataset. Each score is the mean of
three joints, a shoulder, an elbow, and a wrist. See Figure 11 for the
whole results.

| PDI@0.05 [ PDI@0.2

PME s3 48.7 97.6
PME-D 78.0 96.4
Baseline [9] 18.3 81.2
Newell et al. [49] 68.8 98.4
Wei et al. [35] 71.3 97.2

deliver equal performance under a larger threshold (e.g.,
above 0.2), the proposed methods outperform others un-
der a lower threshold (e.g., below 0.1). The PDJ scores at
the threshold of 0.05 for wrist (a strict criterion for a chal-
lenging body part) are 75.4% (PME-D), 71.5% (Newell
et al. [49]), 66.8% (Wei et al. [35]), and 18.2% (base-
line). The proposed algorithms achieve 3.9% and 8.6%
relative improvements over the best [49] and the second
best [35] methods. For the elbow and shoulder, PME-
D outperforms the [49] by 7.2% and 8.8%, respectively.
The increase of spatial resolution by PME-D effectively
reduces inaccurate estimates.

Table 6 shows the results for mean PDJ@0.05 as well
as mean PDJ@2.0 as the advantage of our PME-D ap-
pears in strict thresholds. The results show that we should
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select PME-D or PME s3 depending on the application;
if strict/loose joint detection is needed, PME-D/PMEs3
should be used.

To validate the effect of PME-D, typical examples of
improvement are shown in Figure 12 in which the local
patches of the left shoulder are visualized. As can be seen
in the figure, the joint locations inferred by PME-D (indi-
cated by green stars in Figure 12 (b) and (d)) are closer to
the ground-truth positions indicated by red stars than the
baseline (indicated by green stars in Figure 12 (a) and (¢)).
While such a small improvement gives only a small im-
pact on PCP and PCK with standard thresholds, its effect
can be demonstrated by PDJ.

While PME-D works favorably against other methods
in all thresholds as shown in Figure 11 and Table 6, PME
s3 is outperformed in lower thresholds (e.g., PDJ@0.05)
by other methods including the baseline. This might be
caused because of ambiguous features represented in only
heatmaps given by PM models. As demonstrated in our
experiments (e.g., Figure 4), the PME model becomes rel-
atively robust against the ambiguity of joints, which are
occluded or have similar appearances with other objects,
by integrating high confidence at multiple spatial loca-
tions in multiple PM models. This robustness might be
obtained because not only of the data integration but also
of rough localization given by the heatmaps, which have
no image features. That is, PME is robust in higher thresh-
olds at the sacrifice of localization precision in lower
thresholds, while PME-D avoids this performance degra-
dation by using deconvolution layers.

Effect of Additional Image Features . To investigate
the trade-off between robustness and precision described
above, we fed image features also into our PME model.
However, image features cannot be used in PME s3 due to
a limited memory on a GPU (i.e., Titan X 12 GB in our ex-
periments). This memory problem was avoided by eval-
uating our method in the shallowest PME model, PME
s1, with fewer pose clusters (i.e., K = 3). This model is
called PME s1™.

For experiments with the full-body model on the LSP,
we used image features extracted by a sub-network for
image-feature extraction in a PM model (i.e., the base
model [35]). This sub-network consists of four convo-
lution layers and three pooling layers. We call PME s1*
using the image features PME s1*.
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Figure 11: PDJ curves comparison among PME s3, the PME-D, the baseline, and several state-of-the-art methods on the FLIC dataset.

Table 7: PCK-0.2 evaluation for variants of our proposed method on the LSP dataset. All models were trained on the LSP and LSP-extended
datasets. PME s1* differs from PME sl so that PME s1* has only K = 3 pose clusters. PME s1* uses image features in addition to heatmaps
obtained from PM models as inputs for the PME model. PME sI* is optimized by an end-to-end learning manner with all PM models and the PME
model. The scores of PME s1* and PME s1* are colored by blue in each column if they are above the score of PME s1*.

Method [[ Head  Shoulder Elbow Wrist Hip Knee Ankle | Mean
PME s1* 89.3 90.3 85.3 74.1 95.5 85.1 73.8 84.8
PME s1* (image) 90.9 90.8 85.3 764 953 864 76.0 85.9
PME s1* (E-to-E) 89.7 90.0 85.6 75.2 95.5 85.7 74.7 85.2

(a) Baseline (b) PME-D (c) Baseline (d) PME-D

Figure 12: Visualization of improvement from the baseline by PME-D.
The ground-truth and estimated positions of the left shoulder are indi-
cated by red and green stars, respectively. (a) and (c) show the results of
the baseline, while (b) and (d) are those of PME-D that are closer to the
ground truth than the baseline.

The results of PME sI* are shown in Table 7. It can
be seen that PME s1* is better than PME s1” in the mean
score as well as in many joints. This fact suggests the
potential of the joint usage of the image features and
heatmaps, while this too simple PME model, PME s, is
not appropriate for evaluating the complete performance
of our proposed scheme. We consider this issue to be an
important research direction in order to explore further
improvement with a larger computational resource.

Effect of End-to-end Learning . While the PM and PME

models were trained independently in all experiments
shown before, we investigate the effect of end-to-end
learning with the PME model and all PM models. Note
again that this end-to-end learning is evaluated by the
shallowest PME model, PME s1, with K = 3 clusters due
to a memory issue, as described in Section 4.1. On the
LSP dataset, mean PCK-0.2 scores of independent and
end-to-end-learning schemes are 84.8 and 85.4, respec-
tively, as shown in Table 7. Further analysis of improve-
ment by this end-to-end learning scheme is also consid-
ered to be an important research direction.

Effect of Pose Clustering Criteria . We have conducted
additional experiments on the LSP, where a pose feature
vector is represented by the configurations of legs as well
as arms. That is, in addition to 8, and 6, for the upper
body, 65 and 6, are used in the pose feature vector (i.e.,
Eq. (1)). In our experiments, 65 is an angle between
two line segments defined by the mid point of two hips,
a hip, and a knee, and 6, defined by a hip, a knee, and
an ankle. PME s3 that uses this arm-and-leg pose feature,
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Table 8: PCK-0.2 evaluation for variants of our proposed method on the LSP dataset. The best score is colored by red in each column. All models
were trained on the LSP and LSP-extended datasets. PME s3’ is different from PME s3 in terms of the components of a pose feature. In PME s3’,
the pose feature vector consists of legs as well as arms. s3° differs from PME s3’ in terms of a criterion used for pose clustering. Specifically, PME
s3” clusters the arm-and-leg pose features based on the Procrustes distance instead of the Euclid distance. PME s3” and PME s3” respectively use
the Euclid distance and the Procrustes distance for clustering, while both of them employs the full-body pose features.

Method H Head Shoulder Elbow Wrist Hip Knee Ankle [ Mean
PME s3 92.0 92.0 87.3 718 974 874 77.1 87.3
PME 53 92.6 91.8 87.4 782 974 877 77.6 87.5
(Procrustes)

PME s3 91.1 90.9 86.8 75.8 968 873 712 86.6
(partial arms-and-legs)

PME. s3 92.9 91.9 87.8 784 974 88.0 78.1 87.8
(partial arms-and-legs, Procrustes)

PME s3”

(full-body) 91.0 91.3 85.7 748 970 869 74.1 85.8
PME s3”

(full-body, Procrustes) 92.6 92.2 87.0 772 971 869 76.9 87.1

which is called PME s3’, is expected to be able to repre-
sent the variation of full-body poses better than PME s3
using the pose feature with only arms. The experimental
results show that the arm-and-leg pose feature cannot im-
prove the performance when compared with the pose fea-
ture with only arms; mean accuracy: 86.6 (arms and legs)
vs 87.3 (arms), as shown in Table 8. While the arm-and-
leg pose feature may be better essentially, the pose variety
in each of 10 PM models becomes large in contrast to the
one with only arms. This variety makes it difficult to op-
timize the ensemble model.

For more rigid alignment of 2D pose annotations, it is
known that the Procrustes analysis provides a more effec-
tive metric [12]. PME s3’ and PME s3’ respectively use
the Euclid distance and the Procrustes distance for clus-
tering, while both of them employ the arm-and-leg pose
features. It can be seen that the Procrustes distance im-
proves pose estimation accuracy in most joints: 86.6 (Eu-
clid distance) vs 87.5 (Procrustes distance) on average.
As a result, the model using the arm-and-leg pose feature
becomes better than the one using the arm pose feature:
87.3 (arm) vs 87.5 (arms and legs).

All experiments shown above were conducted with our
pose clustering using a partial body part, which is pro-
posed in Section 3.1. In order to validate its effectiveness,
we also conducted experiments with pose clustering using
all body parts in the full body. While the proposed partial-
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part clustering uses each of the left and right arms/legs
(i.e., N = 4 in Eq. (1) for the arm-and-leg pose feature),
PME s3” and PME s3” employ both left and right arms
and legs (i.e., N = 8). PME s3” differs from PME s3”
so that PME s3” uses the Procrustes distance. As shown
in Table 8, the full-body pose feature is outperformed by
the proposed partial-part clustering even though the Pro-
crustes distance improves the performance.

5. Conclusions

In this paper, we propose the pose-modality-ensemble
model for human pose estimation. Through training PM
models with clustered training samples, we obtain hetero-
geneous PM models that are specialized to particular body
configurations. The PME model is capable of merging di-
verse responses from the PM models. We demonstrate
the effectiveness of PME model on public pose estima-
tion datasets and show that the proposed method performs
favorably against state-of-the-art methods and alternative
model ensemble approaches.

Important future work includes (1) integration of
heatmaps obtained from PM models and image features
by the PME model and (2) an efficient end-to-end learn-
ing scheme with the PME model and all PM models.
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