
Articulated Pose Estimation with Parts Connectivity
using Discriminative Local Oriented Contours

Norimichi Ukita
Nara Institute of Science and Technology

ukita@ieee.org

Abstract

This paper proposes contour-based features for artic-
ulated pose estimation. Most of recent methods are de-
signed using tree-structured models with appearance evalu-
ation only within the region of each part. While these mod-
els allow us to speed up global optimization in localizing
the whole parts, useful appearance cues between neighbor-
ing parts are missing. Our work focuses on how to evalu-
ate parts connectivity using contour cues. Unlike previous
works, we locally evaluate parts connectivity only along the
orientation between neighboring parts within where they
overlap. This adaptive localization of the features is re-
quired for suppressing bad effects due to nuisance edges
such as those of background clutter and clothing textures,
as well as for reducing computational cost. Discriminative
training of the contour features improves estimation accu-
racy more. Experimental results verify the effectiveness of
our contour-based features.

1. Introduction

Articulated pose estimation in single images is presented
in this paper. A number of recent methods employ pictorial
structure models[8]. The models allow us to efficiently ac-
quire a globally optimized geometric configuration of the
whole parts of a target object (e.g. human body) in an im-
age. The optimization is achieved so that the summation of
the following scores is maximized:

Local appearance similarity of a part: The local appear-
ance score of each part grows as its appearance cues
are more similar to those at each location in an image.

Relative consistency between parts: The more probable
the geometric configuration of a pair of parts, the rela-
tive consistency score gets higher.

While the pictorial structures are successful, they impose
two severe limitations on their structures and score func-
tions for efficient score computation. 1) The structure of the
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Figure 1. (Left) Typical estimation error with no appearance cues
between neighboring parts. The left arm was located erroneously
in a background, even though its contour was observed and con-
nected to that of the torso (an upper red circle in the Middle).
(Right) Effect of discriminatively trained local contour features
between neighboring parts, which is a contribution of this paper.

model must be a tree with no loops, where relative consis-
tency only between neighboring parts is evaluated. The tree
structure allows dynamic programming to efficiently and
globally optimize the locations of all parts. 2) The pairwise
score between the neighboring parts must be a quadratic
function. In previous works, this limitation is satisfied so
that only the cost of relative geometric deformation is evalu-
ated with no appearance cues. With this limitation, distance
transform can efficiently compute the max score among all
possible locations of the neighboring parts.

Those limitations in the pictorial structure models cause
the following problems. One of common problems is diffi-
culty in good appearance cues for an individual part because
the similarity score function must be generalized for a huge
variety of the part appearance. The other problem is weak
localization of neighboring parts only by the limitation in
their deformable range. For example, human body parts are
widely deformable (e.g. upper arms spin 360 degrees while
they are connected to a torso).

To solve those problems, this paper proposes a scheme
for evaluating appearance cues not only within each part
but also between neighboring parts. We focus on how to
evaluate parts connectivity using edge contours (Fig. 1).
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Head Right upper leg Right feet

Figure 2. (Left) Tree-based articulated model for human pose esti-
mation. Rectangles and dotted line segments depict nodes of their
respective parts and links between them. One of the nodes is re-
garded as a root node; mainly head or torso nodes in a human body
model. Each node has the pose parameters of the respective part
(e.g. x-y locations, orientation θ, and size s). (Right) Examples of
HOG features[5], each of which is used as the appearance template
of the respective part. The HOG features are evaluated within the
rectangles.

Our contribution is twofold: 1) contour features are
trained discriminatively, and 2) they are evaluated locally
just between neighboring parts for suppressing bad effects
by nuisance edges and the rise in computational cost.

Our effective use of contour cues improves pose estima-
tion accuracy, while the computational cost of the estima-
tion process increases at most 4 times of the base model[31].
With a people image dataset[19], our method outperforms
the base model[31] using the pictorial structure models in
the correctly localized percentages of all body parts.

2. Related Work

Two main research issues exist in pose estimation,
namely an articulated model representation and a image
feature representation.

Articulated models are represented by graphical mod-
els, in general. In the graphical models, each node and link
corresponds to a part and a physical connection between
parts as illustrated in Fig. 2 (Left). Among all possible
models, tree-based models[21], including pictorial structure
models[8], are widely used because of their ability to repre-
sent a variety of shape structures and simplicity for obtain-
ing optimal part locations.

Complex graphical models with loops[3, 30] can im-
prove estimation accuracy and stability against background
clutter. More links are more useful as proposed in [28, 13].
A known problem in those models is difficulty in acquir-
ing optimal solutions because dynamic programming is in-
applicable. Instead of by dynamic programming, optimal
solutions in the complex models are acquired by other tech-
niques; shortest path search[11], particle filtering and belief
propagation[10, 26], integer quadratic programming[20],
RANSAC[15], approximate search[28], and decomposition
to simpler graphs[13].

Image features are fundamental issues not only in pose
estimation but also in many computer vision and pattern

recognition problems. For pose estimation of general ob-
jects, the image features should be generalized for repre-
senting a huge variety of part appearances, which are ob-
served by different clothing and habitus in human pose es-
timation, for example. Such generalized features can be
realized by binning/histogram-based representations (e.g.
using shape contexts[17], histogram of oriented gradients
(HOG)[7, 31]. Figure 2 (Right) shows the HOG tem-
plates of several human body parts. To maintain discrim-
inativity as well as generality, the features of each part
in training data are divided into several clusters and then
trained individually (e.g. clustering based on 2D parts
configurations[12, 31] and 3D parts configurations[4]). Us-
ing multimodal cues is also an effective approach (e.g. su-
perpixels, color and size[18], edges and color-segmented
regions[19], and contours, gradients, and color[22]). Recent
advances have proven that discriminative training of part
appearance can improve part distinguishability[21, 7, 1].

While many complex graphical models and multimodal
image cues have been developed as described above, only
a simple geometric deformation cue is given to the links of
the models for evaluating parts connectivity. That is, few
works have considered more complex but useful features
for the links in the model. We focus on how to employ and
optimize image features (i.e. contours, in this paper) for
imposing useful constraints on the links so that neighboring
parts are connected correctly.

Evaluating appearance cues between parts causes
the rise in computational cost because distance trans-
form cannot be employed in pictorial structure mod-
els. However, many approaches enable speeding up
pose estimation; using lower-dimensional but discrimina-
tive descriptors[6], cascade[22]/hierarchical[32] models for
coarse-to-fine search, and search space reduction based on
person detectors[9, 7] and branch-and-bound pruning[24,
27].

3. Pictorial Structure Models

This section describes basic tree-based articulated part
models. A tree is defined by a set of nodes, V , and a set of
links each of which connect two nodes, E. In this paper, a
human body model is used for human pose estimation. Fig-
ure 2 (Left) is its example. Each node has pose parameters
that localize the respective part. By optimizing the pose pa-
rameters in accordance with a human pose in an image, pose
estimation is achieved. The pose parameters are optimized
by maximizing the score function below:

T (P ) =
∑
i∈V

Si(pi) +
∑

i,j∈E
P i,j(pi,pj), (1)

where pi and P denote a set of the pose parameters of i-th
part and a set of pi of all parts (i.e. P = {pi|∀i ∈ V }).



Si(pi) and P i,j(pi,pj), which are prepared for each part i
and pair of neighboring parts i and j, explained below.

A unary term S i(pi) is a similarity score of i-th part at
pi. This term depends only on local appearance at p i. In our
model, Si(pi) is the filter response using HOG features[5],
each of which consists of 5×5 cells and 18 orientation bins:

Si(pi) = F i · φ(I,pi), (2)

where F i and φ(I,pi) denote the filter of i-th part and the
HOG extracted from pi in image I .

A pairwise term P i,j(pi,pj) is a spring-based score
function between i-th and j-th parts, which has a greater
value if the configuration pi and pj is highly probable.

In the tree-based model[8], the globally optimized pose
parameters, P̂ , can be acquired efficiently by dynamic pro-
gramming inO(l2n), where l is the discrete number of pos-
sible values in pi. Dynamic programming acquires the max
score of (1) by passing the following message from every
leaf node, i, to its parent node, j, recursively toward a root
node:

M(i, j) = Si(pi) + P i,j(pi,pj) +
∑
c∈Ci

M(c, i), (3)

where C i includes all children of i. If the pairwise term re-
lies on no image cues but only on relative geometric defor-
mation between i and j, distance transform[8] is applicable
to fast maximization of (3); its computational cost is re-
duced fromO(l2) to O(l). In this formulation,P i,j(pi,pj)

consists only of the deformation score, D i,j(pi,pj):

P i,j(pi,pj) = Di,j(pi,pj) (4)

In our model,Di,j(pi,pj)[31] is expressed as follows:

Di,j(pi,pj) = wi,j · ψ(pi,pj) =

wi,j · [xi − xj , (xi − xj)
2, yi − yj , (yi − yj)

2]T , (5)

where wi,j denotes a weighted parameter, and (xi, yi) ∈ pi

and (xj , yj) ∈ pj are the locations of i-th and j-th parts.
The parent j collects the messages from its all children

and passes the message to its parent recursively towards a
root node.

After all messages are passed recursively toward the
root, the pose parameters of the root, proot, is determined
so that the following score is maximized:

M(root) = Si(proot) +
∑

c∈Croot

M(c, root) (6)

The pose parameters of children, which maximize (1), are
then determined by backtracking the tree downward.

For pose estimation described above, S i(pi) and
P i,j(pi,pj) must be trained properly. This training is
achieved in advance by using training data where the
ground-truth of the configurations of all parts is given. The
details of the training step are described in Sec. 5.

(a) input image (b) segmented regions (c) contours
Figure 3. Contour extraction via segmentation by quick shift[29].

4. Parts Connectivity with Discriminatively
Trained Local Oriented Contours

The goal of this work is to embed a contour-based
score into a pairwise term, P i,j(pi,pj). Contour features
are used less often for representing parts connectivity[20,
25, 22]. Existing contour-based methods for connecting
parts have the following problems. First, features are de-
termined based on heuristics, such as parallelism of limb
contours[20, 22], with no training data. Second, smooth
and long contours are assumed. The length of only smooth
and long contours is counted in [22]. As well as the con-
tours, the length of small gaps between them and an an-
gle between bending contours are also regarded as cues in
[20]. Entire perimeters of neighboring parts should be ex-
tracted in [25]. These heuristics, the assumption of long
and smooth contours, and naive thresholding are sensitive
to noise and complicated textures.

Our method solves those problems by the ideas below:

Discriminative training: As with appearance training in
each part[21, 7, 1], discriminative training with pos-
itive and negative samples is employed for contour
learning between neighboring parts. This training re-
lieves us from naive thresholding while discriminativ-
ity is improved.

Efficient local contours: Unlike the previous works[20,
25, 22], local but informative contours between neigh-
boring parts are evaluated. A local region for evalu-
ation is adaptively determined depending on the rela-
tive location of the neighboring parts. The motivation
of local evaluation is twofold; to suppress bad effects
due to peripheral edges and to reduce computational
cost. This adaptive evaluation is the difference also
from existing discriminative training methods for each
part’s appearance, because those methods are achieved
with predefined parameters (e.g. a predefined region
size and/or any directed contours).

For contour extraction, we tested normalized cuts[23],
hierarchical segmentation from globalPb[2], and super-
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(a) Contour image (b) Partially magnified images
Figure 4. Selection of contours for evaluating parts connectivity.
Contours in the overlap between neighboring parts are evaluated.

pixelization techniques[14, 16]. The extracted contours
should be located on object boundaries with less over-
segmentation. It is better that the contours are computed
efficiently. For these requirements, we used quick shift[29]
(Fig. 3) with the default parameters of its public code.

As described above, our contour-based cues are evalu-
ated in accordance with the relative configuration of the
rectangles of neighboring parts. More specifically, the con-
tour cues are extracted from an overlap between two rect-
angles in a contour image. This is because the strongest
cues that represent continuous contours between the parts
should be located in where the parts are connected, namely
in the overlap, as illustrated in Fig. 4. If longer contours
are evaluated beyond the overlap, nuisance edges of other
objects and textures might be confused with the contours of
the parts of interest. Our strategy is to improve pose estima-
tion accuracy by efficiently employing additional cues (i.e.
contour cues between the neighboring parts) with less bad
effects. Note that the rectangles of the parts should be rel-
atively large so that they have overlaps between the neigh-
boring parts. For more aggressively extracting contours cor-
responding the boundary lines of the neighboring parts, we
extract contours only that connect the borders of two rect-
angles in the overlap region; those encircled with orange in
Fig. 4 (b) are removed from our contour features.

The orientation of the contour features is also limited in
our model. A dominant orientation along which the bound-
aries of neighboring parts are drawn might be similar to the
orientation between child and parent parts. A typical exam-
ple is observed where upper and lower limbs are oriented in
line. Even if the child and parent parts are oriented differ-
ently (Fig. 5), a portion of the contours are oriented to the
dominant orientation around a certain region with respect
to the parts’ locations. That dominant orientation is deter-
mined so that it is along two joint positions each of which
is located in the child or parent parts. The joint is given to
wherever a part connects to another. Depending on the tree
structure of the articulated model, each part has different
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Figure 5. Weighting contour features along the dominant orienta-
tion, which is from the child to the parent. Contour points each of
whose tangent is toward the dominant orientation are left, while
contours oriented to different angles are suppressed. The orien-
tation bins show the weights for this suppression; darker bins are
less weighted, where contour points are suppressed strongly. Gray
pixels in the overlap show the results of this weighting.

number of joints. In an example illustrated in Fig. 2, the
head and torso have one and five joints, respectively. In our
experiments, all joint positions were given manually1

For strongly evaluating contours along the dominant ori-
entation, a tangent at each point along the contours is com-
puted and clustered to orientation bins, which are illustrated
in the middle of Fig. 5. The bins are weighted so that they
are less weighted as their angle from the dominant orien-
tation gets larger. Each contour point is weighted by the
weight of the bin to which it is clustered. By this weighting
process, contour points each of whose tangent is different
from the dominant orientation are suppressed as shown in
the right-hand image of Fig. 5. The weighted contour points
are regarded as contour features, which are non-oriented
features unlike HOG features; for example, in a window
consisting of 5× 5 cells, our contour feature is a (5× 5)-D
vector, while HOG is a (5 × 5 × N o)-D vector, where N o

denotes the number of orientation bins.
In our experiments, 18 orientation bins were employed,

and the weight of o-th bin, w(o), was given by Gaussian:

w(o) = α exp

(
− (ao − ad)

2

2σ2

)
, (7)

where ao and ad denote the o-th bin’s and dominant orien-
tations.

The score of the above contour features (denoted by
Ci,j(pi,pj) for child i and parent j) is expressed by the
following form, as with (2) and (5):

Ci,j(pi,pj) = Gi,j · υ(I,pi,pj), (8)

whereGi and υ(I,pi,pj) denote the filter between i-th and
j-th parts and the contour features extracted from their over-
lap in image I , respectively. With score (8), the pairwise

1One might determine the joint positions by using training data so that
they cross the overlap between the respective parts.



function (4) in our model is updated as follows:

P i,j(pi,pj) = Di,j(pi,pj) + Ci,j(pi,pj) (9)

For realizing the score function (8), every contour feature
must be extracted from a fixed-size window. This window
is called a contour-evaluation window. It should contain
the overlap between i and j, which is a free-form shape as
illustrated by green polygons in Fig. 4 and 5. In our model,
the contour-evaluation window is a rectangle whose center
is located in the middle point between two joint positions of
i and j. The size of the contour-evaluation window can be
predefined automatically based on training data; the details
of how to determine the size as well as how to optimize the
contour filter, Gi,j , are described in the next section.

5. Implementation Details

5.1. Articulated Model

In our implementation, the articulated model is defined
based on a mixture of non-oriented structures proposed by
Yang and Ramanan[31]. In their model, each part i has its
x-y location and size parameter s as its parameters. Instead
of having an orientation parameter θ, the part model con-
sists of a mixture of templates. The training data of i is clus-
tered depending on the relative location of i with respect to
its parent part. This clustering is achieved by K-means. The
number of clusters in each part is determined empirically.
The number of the clusters was 5 or 6 depending on the part
in our experiments in accordance with [31]. The ID of the
clusters is called a type.

Roughly speaking, type selection works in the same
manner with selecting θ because the training data is clus-
tered in accordance with the relative orientation between
neighboring parts. In addition to this effect, the clustering
enables one more advantage. Each type (denoted by t i of
i-th part; ti ∈ {1, · · · ,Ki}) has its own HOG-based ap-
pearance filter, F ti , and observation probability, bti . This
individual modeling allows each type to specifically repre-
sent a subset of largely varying properties (e.g. F ti and bti)
of each part depending on its pose. As well as the individ-
ual observation probability bti , the co-occurrence probabil-
ity with a type of the parent j, bti,tj , is also employed.

To make the mixture model work robustly to in-plane ro-
tation and foreshortening of limbs, the base model[31] di-
vides physically-rigid parts (e.g. limbs) into several smaller
parts. In accordance with the base model, 26 parts were
used in our implementation; 2 for the head, 4 for the torso,
10 for the shoulders to the hands, and 10 for the hips to the
feet. Each part is shaped like a rectangle. Between those 26
parts, our model has 25 contour-evaluation windows.

The above definition of the parts has high affinity with
our contour-based features. The contours are evaluated
in the overlap between two rectangles of child and parent
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Figure 6. Extraction of contour features between neighboring parts
in the mixture of non-oriented structures[31]. In this model, all
parts are represented by the same-sized non-oriented rectangles.
With this part model, the overlap between the neighboring parts
can be expressed easily as a rectangle, which is always contained
by a contour-evaluation window, whose size is equal to that of the
part rectangle, located in the middle position of the parts.

parts, as illustrated in Fig. 6. The overlap is always con-
tained by a contour-evaluation window, whose size is equal
to a part window, if the joint of each part is located in its
center. Figure 6 illustrates examples. In the base model[31],
the size of the part window is determined automatically
based on the length of parts in training data. By the same
rule, the sizes of the part and contour-evaluation windows,
which are equal, are determined also in our model.

Finally, the score function (1) is updated with (9), bti ,
and bti,tj as follows:

T (P ) =
∑
i∈V

bti +
∑

i,j∈E
bti,tj +

∑
i∈V

Si(pi) +

∑
i,j∈E

(
Di,j(pi,pj) + Ci,j(pi,pj)

)
, (10)

where pi = {xi, yi, si, ti}.

5.2. Discriminative Training

The goal of discriminative training is to optimize the
model parameters required for computing (10), namely bti ,
bti,tj , F i in (2), wi,j in (5), andGi,j in (8). For discrimina-
tive training, positive and negative examples are collected
from training images. The images for the positive examples
have the labeled parameters of each part, p i. With these pa-
rameters, the positive examples for training, φ(I,p i) and
ψ(pi,pj), are obtained. The negative examples are ran-
domly given from background images with no people.

Let β and Φ(I,P ) be a vector consisting of all model
parameters of all parts, which would be optimized, and a
vector got by concatenating the obtained examples. For es-
tablishing a linear classifier fβ(I) = maxP β · Φ(I,P ),
the following objective function is minimized:

1

2
||β||2 + γ

∑
i

max (0, 1− zifβ(pi)) , (11)

where γ denotes the weight of regularization, and z i is −1
or 1 if the i-th example is negative or positive, respectively.

We solve this objective function by quadratic program-
ming, as with the original works[7, 31].



type 1 type 2
Between head and neck

type 1 type 2
Between neck and shoulder

type 1 type 2 type 3 type 4
Between right foot and shin

Figure 7. Examples of the filters of discriminatively trained con-
tour features. Each filter consists of 5× 5 cells, as well as a HOG
filter. But unlike the HOG filter, the contour filter is non-oriented.
For visualization purpose, the magnitude of the filter is depicted by
a segment slanted along the mean orientation between neighboring
parts in training data.

6. Experiments

We tested our proposed model with the Image Parse
dataset[19], in which 305 pose-annotated images are in-
cluded and classified into 100 images for training and other
205 images for evaluation. Negative examples for discrim-
inative training were given from background images in the
INRIA Person database[5].

Figure 7 shows examples of trained contour filters. Con-
tour orientations in each pair of the child and parent vary
depending on variability of the relative orientation between
them. Indeed, as shown in the examples, the contour orien-
tations between the foot and shin varied widely (i.e. 360
degrees) among the types, compared with those between
“head and neck” and “neck and shoulder”.

In accordance with the implementation in [31], pose es-
timation results were evaluated as follows. In the dataset,
14 main points are given as the ground-truth. On these 14
points, the centers of the 14 parts out of the 26 parts of our
structure model were located. Other 12 parts were located
between the 14 main parts. For visual check, the 14 main
points and the links between them are shown (Fig. 8 and
9). Quantitative evaluation was achieved also with the 14
main points, which were used for localizing the line seg-
ments that define 10 body parts, namely head, torso, and
right, left, upper, and lower legs/arms. The estimation accu-
racy was evaluated by the percentage of correctly localized
parts. This quantitative evaluation was done with the code
in the BUFFY stickman dataset[9].

Table 1 shows the results of quantitative evaluation.
For comparison, the results using the base model with 26
parts[31], (a) in the table, are shown.

Our model consists of 26 parts and 25 contour-evaluation
windows. Since our model is based on the base model[31]
and intercalates contour-evaluation windows between 26
parts, one might be interested in the difference between our
model and the base model[31] with 51 parts. It can be seen
that the model with 51 parts could not improve the perfor-
mance, as shown in Table 1 (b).

From the results of our model without any contour selec-
tion in the overlap or weighting contour pixels based on the
dominant orientation, (c) in the table, it can be verified that
contour selection and weighting contours is effective.

The effect of discriminative training of contour features
was also verified. Instead of discriminatively trained fea-
tures, the mean of extracted contours was used for the con-
tour filter, Gi,j . The score for contour evaluation, (8), was
expressed with the weight of contour (denoted by ω i,j):
Ci,j(pi,pj) = ωi,j

(
ῡi,j · υ(I,pi,pj)

)
. We tested ωi,j ∈

{10, 1, 0.5, 0.1, 0.01}. The best results with ωi,j = 0.01,
(d) in the table, were worse than those of our model, (e).

Figure 8 shows several examples where our method got
better results rather than the base model[31]. It can be seen
that, with our model, if clear contours that connect “the
torso and upper limbs” and “the upper and lower limbs”
are observed, the parts could be localized correctly without
being disturbed by other clutters, whose appearance might
be similar to that of a part.

Three examples of big failures with our model are shown
in Fig. 9. In (i), the left lower arm and the right leg were
mislocalized. The right leg is clearly observed with no oc-
clusion, and the left lower arm is occluded but its bound-
ary with the upper arm is observed. It might be possible
to localize these parts correctly by improving our model.
On the other hand, for correctly localizing the lower arms
in (ii), richer appearance cues might be required due to se-
vere background clutter. While all parts in (iii) are clearly
observed, pose estimation was failed probably because the
pose was significantly different from any of those in train-
ing images. To resolve this failure, the effects of pose prior
given by bti and bti,tj should be reconsidered; pose prior
might be overfitted to a small amount of training data. One
might try to resolve this problem by employing more train-
ing data for covering a huge variety of possible poses.

For verifying the possibility of improving the perfor-
mance with more training data, we trained the models with
200 images (1st to 200th images in the Image Parse dataset).
Table 2 shows the results with 100 and 200 training images.
For fair comparison, the same set of test images (201st to
305th images in the dataset) were used. Contrary to expec-
tation, the performance was not improved. This result gives
an insight into requirements of other cues, much more train-
ing data (> 1000 images) with richer attributes[4], etc. Col-
lecting a huge data would cause requirement for processing
inaccurate training data[12].



Model Head Torso Upper legs Lower legs Upper arms Lower arms Total

(a) Mixtures[31] with 26 parts 93.2 97.6 83.9 75.1 72.0 48.3 74.9
(b) Mixtures[31] with 51 parts 95.1 100 83.9 76.1 72.7 42.9 74.6
(c) Our model with no weights 58.5 92.2 52.7 41.5 43.4 27.3 48.1
(d) Our model with no contour training 95.6 99.0 85.4 75.1 73.2 46.8 75.6
(e) Our model 98.5 100 89.8 79.0 77.6 51.2 79.4

Table 1. Comparative results of the percentages of correctly localized parts in pose estimation. (a) mixture model of non-oriented 26 parts,
(b) mixture model of non-oriented 51 parts, (c) our model without weighting contour points based on the dominant orientation, (d) our
model using a weighted score of contour features instead of their discriminative training, and (e) our model.

Training images Head Torso Upper legs Lower legs Upper arms Lower arms Total

(a) 100 images 96.2 100.0 88.6 79.0 76.2 49.5 78.3
(b) 200 images 95.2 99.0 86.7 79.0 75.3 50.5 77.7

Table 2. Model training was achieved with a different number of training images. (a) and (b) were trained with “the 1st to 100-th images”
and “the 1st to 200-th images” in the Parse Image dataset. All models were evaluated with the 201st to 305-th images.

10/10 9/10 9/10 8/10 10/10 8/10

10/10 9/10 9/10 8/10 8/10 6/10

10/10 6/10 9/10 7/10 10/10 7/10
Figure 8. Pose estimation results. For each test image, three results are shown: (Left) 26 part-rectangles estimated by our method, (Middle)
14 main points extracted from the estimated 26 rectangles, and the links connecting these points, (Right) results estimated by the method
without appearance cues between neighboring parts[31]. The number of correctly localized parts is shown under each result.

For more comparison, estimation accuracy was tested
with the BUFFY stickemen dataset[9], as shown in Table
3. The proposed method had less impacts in the BUFFY
dataset compared with the Parse dataset. This might be be-
cause many images in the BUFFY have low contrast that
makes contour extraction difficult. This problem might be
alleviated by adaptive thresholding.

7. Concluding Remarks

This paper proposed contour-based features for connect-
ing neighboring parts in articulated pose estimation. The
features are well localized and discriminatively trained.
The feature localization suppresses bad effects of nuisance
edges and reduces computational cost. Discriminative train-
ing improves connectivity of neighboring parts.



(i) (ii) (iii)
Figure 9. Examples of estimation failure.

Model Head Torso U-arms L-arms Total

(a) [22] 96.2 100.0 95.3 63.0 85.5
(b) [31] 99.6 100.0 96.6 70.9 89.1
(c) Ours 98.9 100.0 97.5 73.9 90.3

Table 3. Comparative results with the BUFFY stickmen dataset[9].
(a) cascaded model[22], (b) mixture model of non-oriented 26
parts[31], and (c) our model.

Future work of our model includes 1) more optimized
featurization of contours in terms of the size and location of
the contour-evaluation window relative to parts and 2) other
good appearance cues for connecting neighboring parts.

The codes of the base model[31] and quick shift[29]
were given by their respective authors.
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by k-fan decomposition and tight lagrangian relaxation. In
ECCV, 2010. 2

[14] A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J.
Dickinson, and K. Siddiqi. Turbopixels: Fast superpixels us-
ing geometric flows. IEEE Trans. Pattern Anal. Mach. Intell.,
31(12):2290–2297, 2009. 4

[15] Y. Li, L. Gu, and T. Kanade. A robust shape model for multi-
view car alignment. In CVPR, 2009. 2

[16] M.-Y. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa. En-
tropy rate superpixel segmentation. In CVPR, 2011. 4

[17] G. Mori and J. Malik. Recovering 3d human body configura-
tions using shape contexts. IEEE Trans. Pattern Anal. Mach.
Intell., 28(7):1052–1062, 2006. 2

[18] G. Mori, X. Ren, A. A. Efros, and J. Malik. Recovering
human body configurations: Combining segmentation and
recognition. In CVPR, 2004. 2

[19] D. Ramanan. Learning to parse images of articulated bodies.
In NIPS, 2006. 2, 6

[20] X. Ren, A. C. Berg, and J. Malik. Recovering human body
configurations using pairwise constraints between parts. In
ICCV, 2005. 2, 3

[21] R. Ronfard, C. Schmid, and B. Triggs. Learning to parse
pictures of people. In ECCV, 2002. 2, 3

[22] B. Sapp, A. Toshev, and B. Taskar. Cascaded models for
articulated pose estimation. In ECCV, 2010. 2, 3, 8

[23] J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. IEEE Trans. Pattern Anal. Mach. Intell., 22(8):888–
905, 2000. 3

[24] V. K. Singh, R. Nevatia, and C. Huang. Efficient inference
with multiple heterogeneous part detectors for human pose
estimation. In ECCV, 2010. 2

[25] P. Srinivasan and J. Shi. Bottom-up recognition and parsing
of the human body. In CVPR, 2007. 3

[26] E. B. Sudderth, A. T. Ihler, W. T. Freeman, and A. S. Willsky.
Nonparametric belief propagation. In CVPR, 2003. 2

[27] T.-P. Tian and S. Sclaroff. Fast globally optimal 2d human
detection with loopy graph models. In CVPR, 2010. 2

[28] D. Tran and D. Forsyth. Improved human parsing with a full
relational model. In ECCV, 2010. 2

[29] A. Vedaldi and S. Soatto. Quick shift and kernel methods for
mode seeking. In ECCV, 2008. 3, 4, 8

[30] H. Wang and D. Koller. Multi-level inference by relaxed
dual decomposition for human pose segmentation. In CVPR,
2011. 2

[31] Y. Yang and D. Ramanan. Articulated pose estimation with
flexible mixtures-of-parts. In CVPR, 2011. 2, 3, 5, 6, 7, 8

[32] J. Zhang, J. Luo, R. T. Collins, and Y. Liu. Body localization
in still images using hierarchical models and hybrid search.
In CVPR, 2006. 2


