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1. Overview

We provide additional materials for better understanding
of our proposed networks. First, we provide the detailed ar-
chitectures from the variants of DBPN. Second, we present
additional analysis of DBPN. Last, we provide additional
qualitative results from our networks compare to the state-
of-the-arts methods.

2. Implementation Details of Networks Archi-
tecture

There are six variants of DBPN which is shown in the pa-
per: DBPN-SS, DBPN-S, DBPN-M, DBPN-L, D-DBPN-L,
and D-DBPN. The detailed architectures of those networks
are shown in Table 1.

3. Additional Analysis

3.1. Sanity Check (R1 and R2)

As an additional experiment, suggested by R1 and R2,
we compared our network with the same network capac-
ity and training set. We use DBPN-S (our shallow network
with 599k parameters) and LapSRN [5], a state-of-the-art
network with 812k parameters. The R1 suggested training
our network on BSDS200 [1] and T91 [9] dataset. However,
the modern deep learning methods should take beneficial
on performing in larger dataset, such as DIV2K. Therefore,
we should note that the smaller BSDS200 [1] and T91 [9]
dataset may be less appropriate for training modern deep
super-resolution methods, in particular due to lack of image
variance. Moreover, BSDS200 is not intended, and may
be ill-suited, for super-resolution training. Instead, larger
dataset is used for fair comparison between DBPN-S and
LapSRN which is DIV2K [8].

In Table 2, we report preliminary results of training with
DIV2K, with total number 800 training images, on the x4
super-resolution task. For reference, we also include orig-

inal LapSRN trained on BSDS200 [1] + T91 [9] dataset.
From the table, it’s evident that our network has overall bet-
ter performance than either version of LapSRN, and in par-
ticular significantly better results on BSDS100, Urban100,
and Manga109. Please be noted also that the gap is higher
on our deeper network such as D-DBPN as shown in the
manuscript’s Fig. 8 and 9 which shows the efficiency of uti-
lizing deeper network and large dataset.

3.2. Error Feedback

As stated in our manuscript, error feedback (EF) is used
to guide the reconstruction in the early layer. Here, we
analyze how error feedback can help for better reconstruc-
tion. For the scenario without EF, we replace up- and down-
projection unit with single up- and down-sampling (decon-
volution and convolution) layer.

We show PSNR of DBPN-S with EF and without EF
in Table 3. The result with EF has 0.53 dB and 0.26 dB
better than without EF on Set5 and Set14, respectively.
In Fig. 1, we visually show how error feedback can con-
struct better and sharper HR image especially in the white
stripe pattern of the wing.

The performance of DBPS-S without EF is interestingly
0.57 dB and 0.35 dB better than SRCNN [2], FSRCNN [3],
respectively, on Set5. These results show the effective-
ness of our mutual-connected up- and downsampling layers
which can demonstrate the LR-HR mutual dependency by
mapping LR features to HR space, then project it back to
the LR space.

3.3. Convergence Curve

In Fig. 2 and Fig. 3, we show the convergence curve of
4× and 8× enlargement from each proposed network in the
manuscript. Our proposed networks have fast convergence
speed especially for D-DBPN where the results of 50k iter-
ation can outperform the state-of-the-art methods except for
EDSR.

1

http://www.toyota-ti.ac.jp/Lab/Denshi/iim/members/muhammad.haris/projects/DBPN.html


Table 1. Network Architecture of DBPN variants. ”Feat0” and ”Feat1” refer to first and second convolutional layer in the initial feature
extraction stages. Note: conv(f, n, st, pd) where f is filter size, n is number of filters, st is striding, and pd is padding

Scale DBPN-SS DBPN-S DBPN-M DBPN-L D-DBPN-L D-DBPN

Input/Output Luminance Luminance Luminance Luminance Luminance RGB

Feat0 conv(3,64,1,1) conv(3,128,1,1) conv(3,128,1,1) conv(3,128,1,1) conv(3,128,1,1) conv(3,256,1,1)

Feat1 conv(1,18,1,0) conv(1,32,1,0) conv(1,32,1,0) conv(1,32,1,0) conv(1,32,1,0) conv(1,64,1,0)

Reconstruction conv(1,1,1,0) conv(1,1,1,0) conv(1,1,1,0) conv(1,1,1,0) conv(1,1,1,0) conv(3,3,1,1)

2× conv(6,18,2,2) conv(6,32,2,2) conv(6,32,2,2) conv(6,32,2,2) conv(6,32,2,2) conv(6,64,2,2)

BP stages 4× conv(8,18,4,2) conv(8,32,4,2) conv(8,32,4,2) conv(8,32,4,2) conv(8,32,4,2) conv(8,64,4,2)

8× conv(12,18,8,2) conv(12,32,8,2) conv(12,32,8,2) conv(12,32,8,2) conv(12,32,8,2) conv(12,64,8,2)

2× 106 337 779 1221 1230 5819

Parameters (k) 4× 188 595 1381 2168 2176 10291

8× 421 1332 3101 4871 4879 23071

Depth 12 12 24 36 40 52

No. of stage (T ) 2 2 4 6 6 7

Dense connection No No No No Yes Yes

Figure 1. Qualitative comparisons of DBPN-S with EF and with-
out EF on 4× enlargement.

3.4. Filter Size

We analyze the size of filters which is used in the back-
projection stage. In the manuscript, we stated that the
choice of filter size in the back-projection stage is based on
the preliminary results. For the 4× enlargement, we show
that filter 8×8 is 0.08 dB and 0.09 dB better than filter 6×6
and 10×10, respectively, as shown in Table 4.

3.5. Luminance vs RGB

In the final network (D-DBPN), we change input/output
from luminance to RGB color channels. There is no sig-
nificant improvement in the quality of the result as shown
in Table 5. However, it might reduce the complexity and
simplify the implementation by avoiding the use of another
interpolation techniques, such as Bicubic, to process other
channels.

Table 2. Comparison of the DBPN-S and LapSRN-DIV2K on 4×
enlargement.

DBPN-S LapSRN-DIV2K LapSRN [5]

Algorithm PSNR SSIM PSNR SSIM PSNR SSIM

Set5 31.57 0.886 31.64 0.886 31.54 0.885
Set14 28.20 0.771 28.25 0.772 28.19 0.772
BSDS100 27.38 0.728 27.36 0.728 27.32 0.728
Urban100 25.49 0.762 25.37 0.759 25.21 0.756
Manga109 29.39 0.891 29.24 0.891 29.09 0.890

Table 3. Analysis of EF using DBPN-S on 4× enlargement. Red
indicates the best performance.

Set5 Set14
SRCNN [2] 30.49 27.61

FSRCNN [3] 30.71 27.70

Without EF 31.06 27.95

With EF 31.59 28.21

Table 4. Analysis of filter size in the back-projection stages on 4×
enlargement from D-DBPN. Red indicates the best performance.

Filter size Striding Padding Set5 Set14
6 4 1 32.39 28.78

8 4 2 32.47 28.82

10 4 3 32.38 28.79

Table 5. Analysis of input/output color channel using DBPN-L.
Red indicates the best performance.

Set5 Set14
RGB 31.88 28.47

Luminance 31.86 28.47

3.6. Runtime Evaluation

We present the runtime comparisons between our
networks and 3 state-of-the-art networks: VDSR [4],
DRRN [7], and EDSR [6]. The comparison must be done
in fair settings. Therefore, we choose only three methods
which have the same in nature with our implementation us-
ing Caffe. The runtime is calculated using python function
timeit which encapsulating forward function in Caffe.
For EDSR, we use original author code based on Torch and
use timer function to obtain the runtime.

We evaluate each network using Nvidia TITAN X GPU



Figure 2. Convergence curve for 4× enlargement on Set5.

Figure 3. Convergence curve for 8× enlargement on Set5.

(12G Memory). The input image size is 64× 64, then up-
scaled into 128× 128 (2×), 256× 256 (4×), and 512× 512
(8×). The results are the average of 10 times trials.

Table 6 shows the runtime comparisons on 2×, 4×, and
8× enlargement. It shows that our SS and S networks ob-
tain the best and second best performance on 4× and 8×
enlargement. On 2× enlargement, we did not construct
the variants of our proposed network except for D-DBPN.

Therefore, we cannot produce the runtime for SS, S, M,
and L networks. Compare to EDSR, our final network (D-
DBPN) show its effectiveness by having faster runtime with
comparable quality on 2× and 4× enlargement. On 8× en-
largement, the gap is bigger. It shows that D-DBPN has
better results with lower runtime than EDSR.

Noted that input for VDSR and DRRN is only luminance
channel and need preprocessing to create middle-resolution



image. So that, the runtime should be added by additional
computation of interpolation computation on preprocessing.

Table 6. Runtime evaluation with input size 64×64. Red indi-
cates the best and blue indicates the second best performance, *
indicates the calculation using function timer in Torch, and N.A.
indicates that the algorithm runs out of GPU memory.

2× 4× 8×
(128×128) (256×256) (512×512)

VDSR [4] 0.02223 0.03225 0.06856

DRRN [7] 0.25413 0.32893 N.A.

*EDSR [6] 0.8579 1.2458 1.1477

DBPN-SS - 0.01672 0.02692

DBPN-S - 0.02073 0.03812

DBPN-M - 0.04511 0.08106

DBPN-L - 0.06971 0.12635

D-DBPN 0.15331 0.19396 0.31851

4. Additional Qualitative Results
In Fig. 4-16, we provide additional results for 8× en-

largement to clearly show the effectiveness of our pro-
posed network. The comparisons focus to compare be-
tween top-3 current state-of-the-art networks which are
LapSRN [5], EDSR [6], and D-DBPN. The complete re-
sults on all datasets will be published in our website.
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Figure 4. Visual comparison for 8× enlargement. D-DBPN is able to separate clearly between the hiragana word and outer stripe pattern.

Figure 5. Visual comparison for 8× enlargement. All networks fail to keep the shape consistency from the HR image. However, the correct
number of holes in the image is only achieved by D-DBPN.

Figure 6. Visual comparison for 8× enlargement. D-DBPN is able to construct shaper eyelashes close to the ground truth.

Figure 7. Visual comparison for 8× enlargement. D-DBPN is able to construct sharper edges. However, it also creates soft black stripes in
the middle part of the wall.



Figure 8. Visual comparison for 8× enlargement. D-DBPN is able to construct sharper edges from the windows.

Figure 9. Visual comparison for 8× enlargement. D-DBPN is able to construct more detailed patterns compare to LapSRN and EDSR.

Figure 10. Visual comparison for 8× enlargement. D-DBPN is able to preserve the stripe pattern in the wall.

Figure 11. Visual comparison for 8× enlargement. D-DBPN is able to construct the white stripes better than LapSRN and EDSR.



Figure 12. Visual comparison for 8× enlargement. D-DBPN is able to construct sharper the blue bars pattern.

Figure 13. Visual comparison for 8× enlargement. D-DBPN is able to construct sharper pattern of ”2” than LapSRN and EDSR.

Figure 14. Visual comparison for 8× enlargement. D-DBPN is able to construct the characters sharper than LapSRN and EDSR.

Figure 15. Visual comparison for 8× enlargement. D-DBPN is able to construct the bars in the window.



Figure 16. Visual comparison for 8× enlargement. D-DBPN is able to preserve the sketch pattern (light black stripes) in the image better
than LapSRN and EDSR.


