
Estimation of 3D Gazed Position Using View Lines

Ikuhisa Mitsugami, Norimichi Ukita and Masatsugu Kidode
Nara Institute of Science and Technology
Graduate School of Information Science

Takayama-cho 8916-5, Ikoma-shi, Nara, 630-0192 Japan
{ikuhi-mi, ukita, kidode}@is.aist-nara.ac.jp

Abstract
We propose a new wearable system that can estimate the

3D position of a gazed point by measuring multiple binocu-
lar view lines. In principle, 3D measurement is possible by
the triangulation of binocular view lines. However, it is dif-
ficult to measure these lines accurately with a device for eye
tracking, because of errors caused by 1) difficulty in cali-
brating the device and 2) the limitation that a human cannot
gaze very accurately at a distant point. Concerning 1), the
accuracy of calibration can be improved by considering the
optical properties of a camera in the device. To solve 2), we
propose a stochastic algorithm that determines a gazed 3D
position by integrating information of view lines observed
at multiple head positions. We validated the effectiveness of
the proposed algorithm experimentally.

Keywords: eye tracking, gazed position measurement,
camera calibration, 3D probability density

1 Introduction
In recent years, a variety of robots and other hardware

have been developed. As their impact increases, they will
provide more effective and advanced support for our daily
lives, but at the same time we will need to deploy a wider
range of operating commands to take full advantage of this
increasingly sophisticated hardware. There is a wide range
of information that a human user may need to transmit to
such hardware for efficient operation, and in this research
we focus on 3D positional information. This information is
important to operate robots and other hardware intuitively
and simply, because they often work in the human 3D en-
vironment. Although 3D positions are very simple infor-
mation, consisting of only 3 parameters in 3D space, it is
possible by combining them to express more complicated
information, such as directions, lengths, areas, and so on.

Several methods for determining 3D position in the real
world have been considered, many of which are based on
finger-pointing (see [1], for example). Pointing by the finger
has the following problems:

1) Even if the system can determine the exact 3D posi-

tion of a user’s fingertip, it is difficult to estimate the
3D position of an object being pointed at by the finger
because the 3D direction of the finger is ambiguous; it
changes depending on situations and individuals. For
example, is 3D direction measured to the user’s finger-
tip from the eye, the elbow, or the base of the finger?

2) The user has to interrupt his/her task while performing
a gesture. It is desirable that the user can indicate a 3D
position without being distracted from his/her task.

Considering the latter problem, a method using the user’s
view lines, which is a kind of gesture recognition, is very
effective. Even while the user is performing a task, he/she
can gaze at a 3D position. Moreover, since the direction of
a view line can be determined uniquely, the former prob-
lem can be avoided. Its simplicity and intuitiveness are also
advantages which we focus on in this work.

When estimating the position of a gazed object, humans
use not only the information of their binocular view lines
but also other information and knowledge subconsciously,
such as the object’s size, color, and shadow. In computer
systems, the latter knowledge is hard to describe and there-
fore the system must estimate the gazed position using only
the former information. To estimate the gazed position only
from the user’s binocular view lines, triangulation can be
employed; however, since the inter-ocular length is short
and all view lines include errors, the estimated result is un-
reliable.

By allowing the user to move his/her head freely, we can
utilize view lines obtained at multiple head positions. We
propose here a stochastic algorithm in which each view line
is described as a cone-shaped probability density distribu-
tion, and the reliability of each gaze is considered. Exper-
imental results demonstrated the effectiveness of this algo-
rithm.

2 Binocular view lines tracker
2.1 Configuration

To measure the user’s view lines, we used an EMR-
8 eyemark recorder (NAC Inc.), which consists of a view
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Figure 3. Calibration of EMR-8.
camera, two image sensors, and two mirrors (Figure 1). The
user’s eyes are monitored by the mirrors and image sen-
sors, and their directions (hereafter called view directions)
are measured by the corneal reflection-pupil center method
[2]. The view camera is placed between the eyes, obtaining
images of the user’s view in real time. The view directions
at each observation time are represented as points on the im-
age obtained by the view camera and overlaid on it (Figure
2).

2.2 Calibration
To overlay the points representing the view directions

onto the image observed by the view camera, correspon-
dence between the view direction and the 2D image coor-
dinates is needed. In the EMR-8, this correspondence is
directly computed because it is difficult to obtain the rela-
tive geometric configuration of the camera and the eyeballs.
To calculate the correspondence, a flat plane in the environ-
ment (e.g., a wall) is used. While the user looks towards the
wall, the view camera also observes the wall. Note that the
wall has to be perpendicular to the view axis of the camera.
Nine points are then superimposed on the observed image
by the EMR-8. Suppose their positions in the 2D image co-
ordinates (Xi, Yi) (i = 0, · · · , 8) are known. All the points
are projected onto the wall in the real environment, for ex-
ample by a laser pointer, and the user gazes at each pro-
jected point in turn. Next, the 3D direction of each binocu-
lar view line (xi, yi) (i = 0, · · · , 8) is measured (Figure 3)
by the EMR-8. These values are derived from the following
equations:

Xi = a0 + a1xi + a2yi + a3x
2
i + a4xiyi + a5y

2
i , (1)

Yi = b0 + b1xi + b2yi + b3x
2
i + b4xiyi + b5y

2
i , (2)

where ai, bi(i = 0, · · · , 5) are unknown constants. These
simultaneous equations are solved to calculate ai, bi. After
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Figure 4. Representation of a view line.

ai, bi are obtained, the EMR-8 is able to correctly overlay
the view direction onto the camera image.

2.3 Error reduction
To estimate the user’s gazed position precisely, it is es-

sential to measure the view directions accurately. This sec-
tion describes how to acquire accurate measurements.

2.3.1 Lens undistortion of the view camera.
Generally an image observed by a camera is distorted be-
cause of its lens so that (Xi, Yi) do not maintain correspon-
dence under perspective projection. This distortion, there-
fore, breaks Equations (1) and (2). To obtain an image un-
der perspective projection, we apply the Tsai method [3] for
camera calibration to the image.

2.3.2 Establishing the wall perpendicularity.
If the view axis of the camera is not perpendicular to the
wall, Equations (1) and (2) are not sufficient. To improve
the accuracy of the observed (Xi, Yi), we draw 2×2 square
grid points on the wall; by adjusting the orientation of the
view camera so that these points are observed as a square,
the user can confirm whether or not the view axis is perpen-
dicular to the wall.

2.3.3 Effect of error reduction.
We confirmed the effect of these methods for error reduc-
tion experimentally. Without any correction, the average
view direction error was 1.4 degrees, whereas with error re-
duction the average was 0.9 degrees.

3 Representation of the view line
3.1 Formulation of a view line

In this section, we describe the representation of a view
line in the view camera coordinate system as shown in Fig-
ure 4. A line which indicates the view direction of an eye-
ball originates at ec. The intersection of the line and the
wall for calibration (calibration plane) is indicated by pc.
The point pc is back-projected to qc on the image plane of
the view camera. As mentioned in Section 2, the output
information of the EMR-8 is qc. Therefore, by using the
distance between the projection center of the camera and



the calibration plane lc, and the focal length of the camera
li, pc is described as follows:

pc =
lc
li

qc. (3)

The view line is defined as the line from ec to pc. The unit
vector of this direction is described by

dc =
pc − ec

|pc − ec| . (4)

With an arbitrary variant m, the view line can be repre-
sented as ec + mdc. It is represented as (ec, dc) below.

3.2 Integration of multiple view lines
To integrate information from multiple view lines ob-

served at multiple head positions, each view line should
be described in the world coordinate system. Suppose that
both the 3D position and the orientation of a user’s head are
known1. Each head position is described by the camera’s
translation 3D vector and rotation 3 × 3 matrix (T and R,
respectively), as shown in Figure 4. Let eg denote the eye-
ball’s position in the world coordinate system and dg the
directional vector of its view line. ec and dc are represented
by these vectors:

ec = Reg + T , (5)

dc = Rdg. (6)

Then, eg and dg can be calculated as follows:

eg = R−1(ec − T ), (7)

dg = R−1dc. (8)

4 Simple method for estimating a gazed posi-
tion

4.1 Reconstructing 3D position using binocular
view lines

As discussed in Section 3, all binocular view lines are
represented in the world coordinate system. In this section,
we estimate the user’s gazed position simply, using only a
pair of left and right view lines. These view lines are de-
scribed as (egl, dgl), (egr, dgr):

�gl =

(
exl,
eyl,
ezl

)
, �gl =

(
dxl,
dyl,
dzl

)
.

�gr =

(
exr,
eyr,
ezr

)
, �gr =

(
dxr,
dyr,
dzr

)
.

The equation of the left view line is
x − exl

dxl
=

y − eyl

dyl
=

z − ezl

dzl
. (9)

1We discuss the necessity of a method for measuring the user’s head
position and orientation in Section 7.
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Figure 5. Depths estimated from a pair of
binocular view lines.

From Equation (9), the following two equations are derived:

dzlx − dxlz = dzlexl − dxlezl, (10)

dzly − dylz = dzleyl − dylezl. (11)

Two equations analogous to Equations (10) and (11) exist
for the right view line. From these four equations, the fol-
lowing matrix equation is obtained:


dzl 0 −dxl

0 dzl −dyl

dzr 0 −dxr

0 dzr −dyr




 x

y
z


 =




dzlexl − dxlezl

dzleyl − dylezl

dzrexr − dxrezr

dzreyr − dyrezr


 .

(12)
By solving Equation (12), we can estimate the 3D gazed
position (x, y, z)T .

4.2 Experimental results
We confirmed the accuracy of the simple method ex-

plained in Section 4.1. The results are shown in Figure
5. The vertical and horizontal axes of each graph indicate
the time (the interval between observations was 1

30 sec) and
z value of the reconstructed position (the z axis is iden-
tical to the optical axis of the camera), respectively. In
each graph, lines 1 to 4 show the results of different trials.
The gazed points were 1213mm, 1633mm, 2393mm and
3283mm from the view camera. Since 1) the inter-ocular
length is too short to reconstruct, and 2) z values of the esti-
mated gazed position contain many more errors than x or y,
each graph shows the z value (the distance from the camera)
transitions of the estimated positions.

From these graphs, we can make the following observa-
tions: 1) the accuracy of the result is relatively high when
the gaze point is around 1200mm; 2) the more distant the
gazed position, the lower its estimated accuracy becomes;
and 3) beyond 3000mm, the result is unreliable. Since it is
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very difficult to acquire a satisfactory estimation from a sin-
gle pair of view lines, more view lines observed at different
positions are required to improve the accuracy of the re-
construction. We therefore propose, below, a sophisticated
method for estimating the 3D gazed position by integrating
multiple view lines.

5 Stochastic algorithm for estimating a gazed
position

All view lines inevitably include errors. As a method
for handling data with errors, the least-square-error (LSE)
method is often employed. In this method, all view lines
are regarded as independent information. However, the di-
rections of binocular view lines are actually dependent on
each other. The LSE method, therefore, is not suitable for
our problem.

Our algorithm is a kind of stochastic approach and has
the advantage that it can consider the reliability of each
user’s gaze when integrating multiple view lines. The pro-
posed algorithm consists of 3 processes: preprocessing, up-
dating, and estimating (Figure 6). Each of these is described
below.

5.1 Preprocessing
In this process, a voxel space is generated in which prob-

ability density distribution is generated and updated. This
voxel space is centered around the initial position deter-
mined by the LSE method from the view lines observed at
the user’s first several head positions. This calculation is
represented as the extension of Equation (12).

5.2 Updating
After generating the voxel space, the probability density

distribution within it is updated at each observation mo-
ment.

Assume that each view line includes Gaussian noise. We
regard each view line not as a line but as a cone distribution.
This cone represents the 3D area in which the true view line
probably exists; the cone is generated around the observed
view line. When new binocular view lines are observed,
two cones are generated and projected into the voxel space

Figure 7. Unreliable probability density distri-
bution generated by multiple cone distribu-
tions.
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Figure 8. Distribution of a pair of binocular
view lines.

for updating the probability density distribution. Since the
user’s head motion may be small and the observed view
lines are approximately parallel, the intersections of these
view lines lengthen greatly along the z axis (as shown in
Figure 7) and the maximum probability in the voxel space
is unreliable.

To solve this problem, we focus on the reliability of
binocular view lines observed at the same moment. We
suppose that the binocular view lines almost intersect each
other if both lines point towards a single gazed position.
Based on this supposition, the algorithm is modified as fol-
lows (Figure 8):

1) Calculate the 3D position Pn nearest to both binocu-
lar view lines observed at the same moment, by using
Equation (12).

2) Generate the Gaussian sphere distribution around Pn.

3) Calculate the intersections of each cone and the sphere
and project them into the voxel space.

If the observed gaze is pointing accurately towards the
gazed position, both of the binocular view lines are close
to Pn so that the density in the calculated intersections be-
comes quite high around Pn. If the gaze is not accurate, on
the other hand, the view lines are distant enough from Pn

to decrease the density in the intersections. This means that
the weight of binocular view lines at each moment varies
according to the reliability of the gaze. Moreover, since the
spread of each intersection is suppressed, the modified al-
gorithm can improve the accuracy of the estimated result.

Initially, the voxel space is generated around a posi-
tion whose reliability is very low. The probability density
distribution may, therefore, easily move out of the voxel
space. To avoid this problem, we introduce a translation
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of the voxel space. After every update process, the system
searches the maximum probability in the density distribu-
tion. Let d be the 3D vector from the voxel center to the po-
sition corresponding to the maximum probability (denoted
by PM ). If PM is outside the space H , whose size is half of
the whole voxel space, the voxel space is translated to d/2
(Figure 9). With this translation, PM should always be near
the center of the voxel space.

5.3 Estimating
In this process, the 3D position corresponding to the

maximum probability is considered to be the optimal so-
lution (i.e., the 3D position gazed by the user) at each mo-
ment. The maximum probability is detected by scanning all
voxels in the voxel space.

6 Experiments
6.1 Simulation experiments

To investigate the effectiveness of the proposed algo-
rithm when the user’s head positions and directions are
known accurately, we conducted simulation experiments.
Figure 10 shows the experimental environment. In these
simulations, the user moved his/her head 20cm to the right2.
While the user’s head was moving, the binocular view lines
were measured 200 times at 1mm intervals. Each view line
involved Gaussian noise, whose standard deviation was 1.0
degree according to the actual view line’s noise (see Section
2).

The results estimated by the proposed algorithm are
shown in Table 1. For comparison, the results estimated

220cm is considered to be the maximal length of a human’s sponta-
neous motion.

Proposed method LSE method
TrueValue Estimated Error Estimated Error
(0, 0, 1000) (0, 0, 1010) 10 (5, 1, 951) 49
(0, 0, 2000) (0, 0, 2010) 10 (18, 5, 1653) 348
(0, 0, 3000) (0, 0, 3010) 10 (33, 11, 2031) 967
(0, 0, 4000) (0, 0, 3980) 20 (47, 16, 2156) 1844
(0, 0, 5000) (0, 0, 5010) 10 (58, 21, 2128) 2873

Table 1. Experimental results: all values are
mm.
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Figure 11. y = 0 sections of 3D density distri-
bution.

by the LSE method are also shown. While the errors of the
latter increased as the distance to the gazed position became
larger, the errors of the proposed algorithm remained very
small.

The graphs of 3D density distributions in the y = 0 plane
are shown in Figure 11. The more distant the gazed posi-
tion is, the less clear the maximal value of the distribution
becomes. That is, the reliability gets lower as the gazed
position gets more distant.

6.2 Experiments using the EMR-8
Next, we conducted experiments using the EMR-8 in a

real environment. In these experiments, while the user’s
head was fixed, the gaze target moved as shown in Figure
12. This situation is similar to one in which the user gazes
at a stationary point while moving his/her head. Therefore,
we could acquire the positions and orientations of the user
by measuring the 3D position of the moving target instead
of the information about his/her head.

Figure 13 shows several experimental results in which
only 3D depth (i.e., z value) was evaluated; errors along the
x and y axes are negligible, in contrast to those on the z
axis. The horizontal and vertical axes indicate the number
of observations and z value of the position, respectively.

From these results, we can conclude the following: 1)
although the accuracy becomes better as the number of
observations increases, it converges at about 100 observa-
tions; and 2) the limit of the 3D reconstruction along the z
axis gets longer compared with the simple algorithm using
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binocular view lines described in Section 4. With the pro-
posed method also, however, the estimated results are un-
reliable. Since all the erroneous results are beyond the true
position, we suspect that cone-shaped distributions widen
too much, overlap with each other and generate some incor-
rect local maxima.

7 Concluding remarks
In this paper, we proposed a stochastic algorithm to esti-

mate the 3D position that a user gazes at. It utilizes the view
lines observed at multiple head positions, and estimates the
3D gazed position by integrating them. We confirmed the
performance and effectiveness of the algorithm by experi-
mentation.

Our planned future work is as follows:

• Implementation in real time

In the current implementation, the algorithm runs very
slowly because the resolution of the voxel space is so
high that the updating and scanning of the voxel space
cost a lot of time. It should be configured adequately
according to the limit of estimation accuracy.

• Tracking the user’s head
Since the user’s head positions and orientations are
given in this paper, we need a method for head track-
ing to implement a system that works in the real world.
Although there has been a lot of research about head
tracking (see [4], for example) that is useful to our sys-
tem, most of those proposals require the user to wear
additional devices. In our system it is not desirable for
the user to wear any devices except the EMR-8. We
are planning to employ vision-based approaches such
as factorization[5] or homography[6] in order to utilize
the EMR-8 camera.

• Learning from personal errors
There may be some errors in gazing that depend
strongly on individuals and that decrease the estima-
tion accuracy. We should study these to improve the
accuracy of the estimated result.

• Position estimation of a moving point
The algorithm is implemented as a stochastic and iter-
ative method so that it can cope with dynamic motion
of a gazed position. We would like to consider this
extension in the future.
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