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Abstract

This paper proposes human motion models of multiple actions for 3D pose tracking. A training pose sequence of each action, such
as walking and jogging, is separately recorded by a motion capture system and modeled independently. This independent modeling
of action-specific motions allows us 1) to optimize each model in accordance with only its respective motion and 2) to improve
the scalability of the models. Unlike existing approaches with similar motion models (e.g. switching dynamical models), our pose
tracking method uses the multiple models simultaneously for coping with ambiguous motions. For robust tracking with the multiple
models, particle filtering is employed so that particles are distributed simultaneously in the models. Efficient use of the particles
can be achieved by locating many particles in the model corresponding to an action that is currently observed. For transferring the
particles among the models in quick response to changes in the action, transition paths are synthesized between the different models
in order to virtually prepare inter-action motions. Experimental results demonstrate that the proposed models improve accuracy in
pose tracking.
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1. Introduction

To estimate the complex poses of a human body in videos
(see survey articles [1, 2, 3]), pose tracking using a motion
prior is effective. The motion prior is useful for resolving short-
lasting ambiguities between a body pose and its image features.
The more detailed and precise the prior becomes, the more ac-
curate the estimation result is. The precise prior of the human
body can be obtained by a motion capture system. Several kinds
of actions, such as walking and running, are recorded in mo-
tion datasets that are widely used for modeling and evaluating
human motions in Computer Vision [4] and Graphics [5, 11]
communities. The motion model of each action can be used for
pose tracking in that action.

A set of motion models for multiple actions is proposed in
this paper. In addition to elemental actions recorded in a motion
dataset, transitions among these actions (e.g. from walking to
jogging) are also observed in natural scenarios. Potential transi-
tions among all of the actions are extremely varied (i.e. includ-
ing intra-individual and inter-individual variations). Recording
all of these variations is unrealistic. If the motion priors of the
multiple actions are modeled with no transitions, pose tracking
over different actions is difficult.

This paper proposes a set of motion models that explic-
itly represent the smooth transitions among elemental actions,
which are recorded in the dataset. In the proposed motion mod-
eling, the smooth transitions are synthesized from the original
dataset and used for modeling a motion prior among different
actions. In pose tracking with the proposed models, unlike
switching dynamical models, the multiple motion models are
employed simultaneously for improving robustness of motion
prediction; even if a motion model fails to predict the motion

of a target person, another model would be able to follow that
motion.

After introducing related work (Sec. 2) and previous meth-
ods for pose tracking with a single action model (Sec. 3), Sec.
4 describes how to build the proposed models with multiple
actions and how to use the models for pose tracking. Experi-
mental results with the proposed models are presented in Sec.
6, and we conclude the paper in Sec. 7.

2. Related Work

Human pose estimation is mainly classified into model fit-
ting [6] and feature-to-pose regression [7]. Model fitting is
achieved by adjusting a pose of a skeletal model (i.e. a set of
joint angles/positions) so that the pose fits into the image fea-
tures of a human body (e.g. edge, silhouette, volume). In pose
regression, a regression function between synchronized poses
and image features is employed. The function is obtained in
advance from real images and pose data that are captured si-
multaneously by a camera(s) and a motion capture system.

Both for model fitting and pose regression, temporal pose
tracking [8] is superior than pose estimation at each frame. For
tracking robust to failure in image processing, particle filtering
is effective; see [40], for example. While particle filtering is
successful for many visual tracking problems because of its ro-
bustness and ability to recover from tracking failure, applying
it to human pose tracking is not easy due to two reasons: curse
of dimensionality and complex body-motion.

Curse of dimensionality: Although particle filtering can be
done in a relatively high-dimensional space by using particle
reposition [9] and coarse-to-fine processing [10] (e.g. annealed
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particle filtering [46]), it is difficult in a more high-dimensional
space (30-D or more) such as a human pose space.

Complex body-motion: In human pose tracking, a motion
model is needed for predicting a pose at t + 1 from that at t.
Human motion has been modeled by various ways: interpola-
tion [12], Gaussian mixture models [13, 14], Hidden Markov
Models (HMM) [16], Variable Length Markov Model [17],
manifold [18], exemplar (retrieval) model [19], autoregres-
sive model [20], and Relevant Vector Machine (RVM) regres-
sion [21]. Generalization and accuracy of a motion model are
crucial for correct pose tracking. Indeed, high dimensionality
of the joint angles/positions (i.e. 30–60 dimensions) and their
erratic motions make it difficult to represent various motions
efficiently and correctly.

In most of the motion models, high-dimensional complex
and erratic motions are modeled probabilistically (e.g. by us-
ing HMM or Gaussian) in lower dimension (e.g. by using
PCA, Isomap [22], LLE [23], LTSA [24], or their combina-
tions [25]). In such a low-dimensional space, particle filtering
works well. For low-dimensional modeling, nonlinear prob-
abilistic embedding such as Gaussian Process Latent Variable
Models (GPLVMs [26]) is widely used recently. GPLVM is su-
perior to the above mentioned dimensionality reduction meth-
ods in terms of its abilities of nonlinear mapping and stochastic
modeling. Compared with linear mapping, nonlinear mapping
can precisely express the complex mapping between higher-
dimensional and lower-dimensional spaces. The stochastic rep-
resentation tells us which pose is often observed; this informa-
tion is useful for determining the likelihood of each observation
in a pose tracking process.

Several extensions of GPLVM have been studied, for exam-
ple, dynamics representation [35], bidirectional smooth map-
ping between latent and observation spaces [27], hierarchical
representation [28], and a shared latent structure that allows us
to connect multiple observation spaces [37].

Above all, Gaussian Process Dynamical Model (GPDM) [35]
is useful for modeling temporal data such as human motion.
This is because GPDM provides a low-dimensional model and
a motion prediction function in the model simultaneously. The
motion prediction function in the low-dimensional space allows
us to resolve the above mentioned two problems in particle fil-
tering for human pose tracking (i.e. high-dimensionality of a
human body pose and its complex motions).

These latent models with Gaussian Process (GP) allow us to
model multiple kinds of actions as well as a single action; a set
of independently trained models [29, 30] and a unified model
with multiple actions trained together [29, 47, 31, 32]. These
multi-action models allow us to achieve pose tracking in a gen-
eral long sequence, in which different actions are sequentially
observed. While selection of an appropriate model at each mo-
ment is required for a set of the independent models, it has ad-
vantages with respect to scalability and accuracy; 1) since the
computational cost of modeling grows as sample data increases
in each model, (i.e. the computational cost is expressed by
O(N3

S ) [26] where NS is the number of samples1), the indepen-

1Even a fast stochastic gradient-descent approach [33] slows as sample data
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Figure 1: Learning the motion prior and feature-to-pose regression of a single
action. (1) Feature extraction (e.g. shape contexts [43]). (2) Shared latent-
structure modeling with GPDM. Each latent variable corresponds to its respec-
tive feature and pose as depicted by red arrows.

dent models allow us to compute each model fast and 2) each
model is optimized for its respective action. However, neither
independent nor unified models are good at estimating motion
transitions between different actions if such motion transitions
are not included in sample data for training. As mentioned in
the introduction, recording all of possible transitions among a
number of actions is difficult.

Synthesizing realistic transitions between different poses
has been widely studied in Computer Graphics. For synthe-
sizing transitions among arbitrary motion sequences, motion
graphs [34] are useful. The goal of motion graphs is to syn-
thesize a new sequence as visually natural as possible. In mo-
tion graphs, new transitions are synthesized by connecting (i.e.
interpolating) sample sequences via similar poses in different
sequences.

We propose 1) how to integrate the advantages of GP la-
tent models for a low-dimensional principal representation and
motion graphs for synthesizing a variety of realistic transitions
among actions in the high-dimensional observation spaces and
2) how to achieve accurate pose tracking in the models.

3. Pose Tracking in a Single Action: Previous Works

The proposed pose tracking is based on pose regression from
image features. This section describes previous methods for
pose tracking of a single action. Its learning scheme is de-
scribed in Sec. 3.1 and 3.2, while its tracking scheme is ex-
plained in Sec. 3.3. The process flows of the learning and
tracking schemes are illustrated in Fig. 1 and 3, respectively.

3.1. Motion Modeling by Gaussian Process Dynamical Models
Gaussian Process Dynamical Models (GPDM) [35] (Fig.

2) represent the smooth dynamics of sample data in a low-
dimensional latent space X (e.g. “Pose latent space” in Fig. 2)
from high-dimensional observed data in an observation space Y,
(e.g. “Pose observation space” in Fig. 2), namely joint angles
in our experiments. Inherently a GP allows us to generalize the
latent space increasing its conformity with human body kine-
matics. GPDM is defined by two mapping functions; 1) from
a point at t to a point at t + 1 in the latent space, xt+1 = fD(xt)
where xt, xt+1 ∈ X, and 2) from the latent space to the observa-
tion space, yt = fO(xt), where yt ∈ Y. fD(xt) gives us the ca-
pability of temporal prediction that is useful for tracking. (e.g.

increase.
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Figure 2: GPDM [35] provides 1) a mapping function from a latent space X
to its observation space Y and 2) a temporal mapping function from a latent
variable at t − 1 to that at t. Circles and arrows in X depict latent variables
and temporal mapping, respectively. The background color in X denotes the
variance at each point; lower variance (red) to higher variance (blue).

Bayesian tracking [8] and particle filtering [38]). The nature
of GP also provides the distribution (variance) of data. More
specifically, the variance of xt is calculated.

Given a sample sequence of high-dimensional observation
data Y =

[
y1, · · · , yN

]
, where N denotes the number of frames,

the mapping functions are acquired by maximizing the joint
likelihood of Y and X2:N with respect to X = [x1, · · · , xN] and
X1:N−1, respectively, where X2:N = [x2, · · · , xN] and X1:N−1 =

[x1, · · · , xN−1]. In this optimization, similarity between differ-
ent components in X is evaluated by a nonlinear kernel func-
tion. The nonlinear kernel function was implemented by the
Gaussian radial basis function in our experiments.

3.2. Shared Latent Structure for Connecting Features and
Poses

For feature-to-pose regression in the proposed method, syn-
chronized features and poses (“Feature sequence” and “Pose
sequence” in Fig. 1) are modeled together. The connection be-
tween them is established by the latent space shared by their
observation spaces, as shown by (2) in Fig. 1, as with pose
tracking proposed in [36]. Shared latent structure modeling [37]
connects two observation spaces via a single shared latent space
by maximizing the joint likelihood of YP = [yP

1 , · · · yP
N] and

YV = [yV
1 , · · · , yV

N] with respect to X, where YP and YV denote N
samples of synchronized poses and features, respectively. Then
each latent variable xt corresponds to its respective pose yP

t and
feature yV

t as depicted by thin red arrows in Fig. 1.
In our framework, X is optimized from YP and YV with

GPDM for obtaining temporal transition in X; the joint likeli-
hood of p(YP|X), p(YV |X), and p(X2:N |X1:N−1) is maximized.
Initialization and optimization of the shared latent space are
achieved in the same way as [36].

3.3. Particle Tracking for Feature-to-Pose Regression

With feature-to-pose mapping via their shared latent space,
pose estimation at each frame can be achieved. For successful
pose estimation, correct feature tracking is needed in an image
sequence.

For feature tracking, particle filtering in the latent space, X,
is performed. A particle at t in X transits from its respective
one at the previous frame (t − 1) using motion prior fD(·) as
shown in Fig. 3 (2) and then is mapped to the feature space as
shown Fig. 3 (3). At each frame t, a feature is extracted from a
captured image as shown in Fig. 3 (1). Then the likelihood ct,i
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Figure 3: Pose tracking with a motion model. (1) Feature extraction. (2) Par-
ticle tracking using a motion prior. (3) Mapping the particles into the feature
space for evaluating its likelihood. (4) Mapping the likelihood-weighted mean
of the particles to the pose space.
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Figure 4: Pose tracking with multiple motion models. (1), (2), and (3) are same
with those in Fig. 3, except that particles are propagated in the multiple models
simultaneously. (4) Mapping the likelihood-weighted sum of the particles from
the latent space that has the maximum likelihood into the pose space.

of i-th particle at t (denoted by pt,i) with respect to the feature
at t (denoted by f t) is expressed as follows:

ct,i = exp
(
−wvσ

2
t,i − wo|| f V

O (pt,i) − f t||2
)
, (1)

where σ2
t,i and f V

O (·) denote the variance of pt,i in the model and
the mapping function from X to the feature space, respectively.
Weight variables wv and wo are determined empirically.

Finally, the pose is estimated by mapping the likelihood-
weighted mean of the particles from X to the pose space as
shown by (4) in Fig. 3.

4. Pose Tracking in Multiple Actions with Synthesized
Transition Paths

4.1. Particle Tracking in the Motion Models of Multiple Actions

As mentioned in [29], independent modeling of actions can
represent each action better than unified modeling in a single
model. Each model is generated by the method described in
Sec. 3 in the learning process.

In pose tracking with multiple action models (Fig. 4), de-
pending on an action observed at each moment, the model cor-
responding to that action is selected for correct pose tracking.
Model selection should take into account the history of track-
ing results for robustness to instantaneous observation error.
While the above mentioned method [29] employs multiple ac-
tion models, it has no strategy for model selection for the track-
ing purpose. Such model selection has been studied for tracking
complicated motions; for example, switching dynamical sys-
tems [39] selects proper human motion dynamics. Switching
GPDMs [30] improves tracking robustness by dimensionality
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(a) No training data between two actions (b) With training data between two actions
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Estimated motions
Synthesized
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Figure 5: Estimating motion dynamics between two different action models.
Blue and green arrows depict temporal motions of original training data (i.e.
body poses) depicted by black dots. Purple arrows are prepared by concatenat-
ing poses synthesized by interpolation between the original poses; the synthe-
sized poses are illustrated by black squares. Red arrows are estimated from the
motion dynamics that are modeled by training data. Red arrows in (a) are esti-
mated only from blue and green arrows, while those in (b) are estimated from
blue, green, and purple arrows.

reduction of data spaces (i.e. pose and image feature spaces)
and particle filtering, where particles are propagated using the
selected motion dynamics in the lower-dimensional space.

While switching GPDMs [30] combines multiple dynamical
models and particle filtering in the efficient low-dimensional
space, several advantages of the combination are lost:

• Single hypothesis of motion: In [30], particles allow us
to track multiple hypotheses of pose, but only one mo-
tion dynamics is selected and applied to all the particles
at each moment. If the selected motion dynamics is differ-
ent from a currently observed motion, many particles are
propagated to a direction different from that of the target
motion.

The switching GPDMs [30] has one more problem:

• No transition path: In [30], it is implicitly assumed that
sample motion data between multiple actions are given for
learning the switching states. However, it is difficult to
obtain the sample data of all possible transitions among a
number of actions. If no transition path is included in mo-
tion models, quick particle transition between the models
is difficult.

To resolve these two problems, the following ideas are em-
ployed in our proposed method:

• Multiple hypotheses of motion: Particles are distributed
in multiple dynamical models that are used simultaneously
for multiple hypotheses of a motion prior.

• Synthesized transition path: Transition paths are synthe-
sized from the real samples of multiple actions and merged
with them. The synthesized paths achieve smooth parti-
cle propagation in quick response to varying human ac-
tions; motion dynamics along the synthesized paths leads
the particles to a next action model.

While the mixture of multiple models can be used for rep-
resenting the pose between different actions as proposed in
[29], it might produce incorrect motion dynamics around

the middle point between action models. Figure 5 (a)
shows typical examples. This figure shows a feature space
where motion dynamics is modeled. Blue and green ar-
rows depict the traveling directions of training data of two
different actions. Using these training data, motion dy-
namics around those two actions are estimated as illus-
trated by red arrows. All the estimated motions point to
the directions same with those of the training data.

On the other hand, our solution is to explicitly employ
training data that move between those actions, which are
depicted by purple arrows in Fig. 5 (b), for embedding
motion dynamics between them into the models.

Specifically, pose tracking with the proposed motion models
is designed in accordance with Condensation [40]:

1. Particles are randomly distributed in the total models.
2. The existing particles are drifted using motion prior fD(·)

at t as illustrated in (2) in Fig. 4, and then diffused so
that more particles are placed near the ones having higher
likelihood, which is computed by Eq. 1 at t − 1.

3. Each particle is mapped into the feature space and com-
pared with the feature at t for evaluating the likelihood of
the particle by Eq. (1), as illustrated in (3) in Fig. 4.

4. The sum total of the likelihoods of all particles in each
model is considered to be the similarity score of the model,
which shows how the model fits with a currently observed
action. The model having the max similarity is selected.
The likelihood-weighted sum of the particles in the se-
lected model2 is mapped to the pose space for estimating
the pose observed at t, as shown by (4) in Fig. 4.

5. If the likelihood of a particle is below a threshold, this par-
ticle is removed. Then go back to 2.

The difference from Condensation [40] is that particles are
distributed in the multiple models and move among the different
models by diffusion. Diffusion among the models is achieved
via transition paths as well as within a model. Synthesizing the
transition paths is described in Sec. 4.2. Section 4.3 describes
how to diffuse the particles between the models via the synthe-
sized transition paths. Section 4.4 shows how to maintain the
scalability of the models that include the synthesized transition
paths.

4.2. Synthesizing Transition Paths among Multiple Actions
In the proposed model, transition paths are synthesized from

real samples and merged with them. For realistic transi-
tion, short and smooth paths are synthesized as with motion
graphs [34, 41]; the path should 1) be short for synthesizing
pose data that are similar to real samples by interpolation near
those samples and 2) be smooth to avoid unnatural change in
motion.

4.2.1. End Points of Transition Paths in Sample Data
Two end points of each transition path are determined so that

their respective poses have the local maximum of a similarity

2One might use all particles in all models for pose regression (e.g. [29]).
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Figure 6: Local maximum of similarity (indicated by green rectangles) that
correspond to the end points of transition paths. Two kinds of dance sequences
were used: a subject moved the arms “right-upper and left-upper” and “right-
upper and left-lower” in actions 1 and 2, respectively.
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Figure 7: Interpolating pose data between the extracted end points that connect
actions a to b.

score between pose vectors y of two actions a and b, −||ya
i − yb

j ||,
where subscripts denote i-th and j-th frames, and the similarity
score is above a threshold, which was given manually. For the
similarity score, y consists of 3D positions of all joints.

In an example of Fig. 6, two poses enclosed by green rect-
angles show a pair of the poses that have the local maximum of
the similarity score.

While only one example is shown in Fig. 6, other pairs of
similar poses between two actions are also extracted as the end
points of transition paths, if each of the pairs has the local max-
imum of the similarity score. In the example of Fig. 6, the end
points can be extracted when two arms are located in front of
the body (e.g. the third images from the left and the second
images from the right in Fig. 6). In examples of walking and
jogging actions, which were also used in experiments shown in
Sec. 6, the end points can be found whenever the left or right
legs touched the ground. In all pairs of the end points, transition
paths are synthesized as described in the Sec. 4.2.2.

4.2.2. Synthesizing Pose and Feature Data on Transition Paths
New paths are synthesized by interpolating sample poses be-

tween the extracted end points. The poses are interpolated in the
joint angle representation, which are represented by quaternion,
because interpolating joint positions would cause the change in
the length of each limb. While naive interpolation between the
samples is executed in the original motion graphs [34], good
connectivity is achieved by finding the shortest path between
the samples via a number of intermediate interpolation poses in
[41]. These synthesized paths meet the requirement for short
and smooth transitions.

In the proposed method, an additional constraint for smooth
transition is employed by taking into account the smoothness
of the sample motion. The existing methods [34, 41] control

the smoothness by adjusting the number of interpolating points.
How to determine the number of the points is important, which
has not been discussed in the existing methods. Our method
determines the number of the points adaptively depending on
the sample motion so that the curvature of the synthesized path
is less than the largest curvature of the samples that are near the
transition path. Specifically, synthesizing the transition path is
designed as follows:

• P1: Assume that end points, ya
i and yb

j (“End points” in
Fig. 7), are found between actions a and b. Let θAi be an
angle between yA

i and yA
i−1, where A ∈ a, b. The angle is

defined by the inner product of yA
i and yA

i−1: cos θAi = (yA
i ·

yA
i−1)/||yA

i || · ||yA
i−1||. θ̈Ai denotes its second derivative: θ̈Ai =

(θAi −θAi−1)−(θAi−1−θAi−2). The maximum θ̈Ai (denoted by θ̈Amax)
and ||yA

i+1− yA
i || (denoted by ymax) are computed among i± t

and j± t, where t ∈ {1, · · · , T }. In all experiments, T = 30.

• P2: ya
i and yb

j are interpolated for synthesizing new poses
ys

k, where k ∈ {1, · · · ,NI}. NI is determined so that ||ys
k+1 −

ys
k || = ymax and θ̈s

k = θ̈
s
l , where ∀k,∀l ∈ {1, · · · ,NI}. If

θ̈s
k is above θ̈Amax, i = i − 1 and j = j + 1 then start P2

again. Otherwise, the synthesized path is accepted. In the
example in Fig. 7, the synthesized paths in (0) i = j = 0
and (1) i = −1 and j = 1 are rejected because θ̈s

k is above
θ̈Amax, while the path is accepted in (2) i = −2 and j = 2.

• P3: P2 synthesizes a path also from yb
j to ya

i .

• P4: If two or more transition paths should be synthesized
between around ya

i and yb
j , i = i− 1 and j = j + 1 and then

go back to P23

If the sample motions around the transition path are smooth,
a smaller number of points are synthesized by the above men-
tioned interpolation. For example, since two dance actions have
very similar poses (e.g. those indicated by green rectangles in
Fig. 6), these poses were connected only with two or three
synthesized poses, in experiments. Between walking and jog-
ging actions, which were used also in the experiments, even the
most similar poses are apart from each other, more poses were
synthesized for each transition path; around five or more poses
were synthesized.

The algorithm described above synthesizes pose data on a
transition path. For accurate regression around the synthesized
pose data, the regression function should be trained with these
synthesized poses. For learning feature-to-pose regression with
the synthesized poses, the feature data corresponding to them
are required. The features corresponding to the synthesized

3In all experiments in this paper, only one path was synthesized between
each pair of end points. The number of the paths should be determined in accor-
dance with a task (e.g. applications, subjects, environments, and scenarios). For
example, for human animations, motion transitions should be visually natural,
but it is not understood how to quantify the amount of acceptable transitions, as
described in [42]. In our proposed models for pose tracking, the number of the
transition paths can be possibly determined automatically based on the distance
between the end points; the shorter the distance is (i.e. the more similar the two
actions a and b are), the more the number of the transition paths increase.
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Figure 8: Particle transition between different actions. Upper and lower fig-
ures illustrate the histories of the particles with and without transition paths,
respectively. Blue and yellow lines show latent variables of real sample data
and synthesized data, respectively. Pink, red, and green points depict particles,
their mean positions (i.e. current states), and data observed at each moment,
respectively.

poses are generated by interpolation of the features on the both
ends under constraints given by the synthesized poses. The de-
tails of our implementation is described in Sec. 5.2.

4.3. Particle Tracking with Diffusion among Models along Syn-
thesized Transition Paths

As described in Sec. 4.1, the basic scheme of our pose track-
ing is same with Condensation [40]. The main difference from
Condensation is to distribute particles in multiple models and
to propagate them among the models. Particle diffusion among
the models is executed as follows:

1. In each model, all particles are diffused after drift using
a motion prior. Diffusion is represented by the following
equation:

p(pd|pp) ∝ exp
(
−1

2
(pd − pp)2

)
, (2)

where pp and pd denote particles given by drift using the
motion prior and the diffusion, respectively.

2. The particles each of whose nearest sample is one of the
synthesized samples are selected. The nearest neighbor is
found based on a Euclid distance in the latent space. Let
m and n denote the model where the selected particle is
located and the model to which m connects via the synthe-
sized path, respectively.

3. For each of the selected particles, variance σm
2 in m is

computed. The particle is mapped into n to compute σn
2

also. Then there is exp(−σn
2) in (exp(−σm

2)+ exp(−σn
2))

chance that the particle moves to n.

A typical example of particle transition from actions 2 to 1
is illustrated in Fig. 8. If no transition path exists between ac-
tions 1 and 2, the number of particles in model 1 increases only
when observed pose gets close to action 1 (i.e. at t + 2 in the

Bin

Azimuth

Radius

Height

Voxels’ median

Figure 9: Bin structure in a volume descriptor.

figure). With the proposed model, on the other hand, the parti-
cles readily move to model 1 because of the synthesized path,
which induces the particles to move to model 1 by diffusion.
The synthesized path allows us also to obtain proper feature-
to-pose regression during transition (i.e. at t + 1 in the figure)
because the regression function is trained with the synthesized
data along the path.

4.4. Scalable Motion Learning with Synthesized Paths

The learning scheme in our method achieves scalability
against the number of actions by the following steps:

• L1: Given NA action sequences. i is initialized to be 1.

• L2: For each of j-th actions s.t. j < i, pose and feature
data on transition paths are synthesized between i-th and
j-th actions. GPDM with shared latent modeling is applied
to i-th sequence with all the synthesized data.

• L3: If i < NA, i = i+1 and then go back to L2. Otherwise,
halt.

If a new (NA + 1)-th action is added, perform L2 with i =
NA + 1. No re-optimization is required for other existing se-
quences. With this ad-hoc independent learning scheme, each
model is optimized from only one action sequence and several
synthesized data. Since the dominant computational cost in la-
tent modeling is O(N3

S ) [26] where NS is the number of sam-
ples, independent learning reduces the computational cost sig-
nificantly and thus achieves scalability of motion model learn-
ing.

5. Image Features and Their Interpolation

5.1. Image Features

Two kinds of image features were used for empirical evalua-
tion in a studio. One of them was extracted only from a single
view, and the other was from multiple views. The former was a
set of shape contexts [43, 44], and the latter was a volume de-
scriptor [48, 38], which is effective for reducing negative effects
due to self occlusion in a single view.

Shape contexts [43] are log-polar histograms, each of whose
center is a reference edge point, of the rest of edge points. The
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Figure 10: Synthesizing image features along a transition path.

log-polar histogram has No orientation and Nr radius bins. In
our experiments, the edge points were sampled from the bound-
ary points of a subject’s silhouette, which was extracted using
background subtraction and color detection. The radius of the
log-polar bins was normalized with respect to the size of the
silhouette because the observed size of the subject varied de-
pending on the distance from a camera.

The performance of shape contexts has been proved in com-
parative experiments [49]; since edge points could be extracted
correctly in our experimental studio, shape contexts provided
superior performance. Each shape was represented by a set of
Ns shape contexts. In training, all shape contexts of all frames
were divided to Nc codebooks by K-means clustering. Then
shape contexts extracted at each frame were voted to the code-
books in order to make the histogram of the shape contexts.
Each shape context is voted to the nearest neighbor codebook.
This bag-of-features approach allows us to achieve robustness
against local shape deformation and occlusion. In our experi-
ments, No, Nr , Ns, and Nc were 12, 5, 200, and 100, respec-
tively.

A volume descriptor [48, 38] is extracted from the vi-
sual hull of a subject, which is reconstructed by Shape-from-
Silhouettes [45]. From the visual hull, surface voxels are ex-
tracted for efficient modeling, as with [48, 38]. The visual hull
is then divided into several bins as shown in Fig. 9. In our ex-
periments: 1) the shape of the bin model is a cylinder, whose
vertical center line passes through the median of all human vox-
els; 16 height divisions and 36 azimuth divisions, and 2) the
entities of each bin are the number of surface voxels and their
mean distance from the center line. Unlike shape contexts, only
one volume descriptor is extracted as a feature of each volume.

Both in shape contexts and volume descriptors, dissimilarity
between two features, f 1 and f 2, is expressed by || f1 − f 2||2.

Action1 Action2

Action1 Action2

Synthesized 

paths

Action1 Action2

Action1
Action2

Particles

M1 M3

M4 M5
(Proposed models)

Particles

M2

Figure 11: Five motion models used in experiments. Solid black and yellow
lines depict real sample and synthesized data. Red dots depict particles. See
the body text for the details of the five models.

5.2. Interpolating Features along Transition Paths
As described in Sec. 4.2.2, as well as pose data, image fea-

tures must be synthesized along transitions paths. The features
are synthesized by interpolation between two end points of the
transition path.

Shape contexts corresponding to their respective synthesized
pose are computed from edge points that are generated in ac-
cordance with the synthesized pose. For generating the edge
points, the edge points extracted from the frames of two end
points (denoted by end points a and b) are interpolated as fol-
lows. Given Ni synthesized frames between a and b and two
sets of edge points extracted from a and b (denoted by edge
sets Ea and Eb), point correspondence between Ea and Eb is
first obtained. To this end, Ea and Eb are overlapped so that
their centroids coincide with each other. Then, interpolation of
ea ∈ Ea and eb ∈ Eb, which are corresponding edge points, in
i-th synthesized frame is computed as follows:

p(e, i) =
||J(i, b)||

||J(i, a)||+ ||J(i, b)||D(i, a) +

||J(i, a)||
||J(i, a)||+ ||J(i, b)||D(i, b), (3)

J(i, q) = p( j(eq), i) − p( j(eq), q), (4)
D(i, q) = p(eq, q) + J(i, q), (5)

q ∈ a, b

where p(e, i) and j(e) denote the position of e at i-th frame and
the joint that is nearest to e, respectively.

In the same way as shape contexts, volume descriptors are
synthesized by interpolating surface voxels instead of edge
points.

Figure 10 shows examples of synthesized features between
walking and jogging samples.

6. Experiments

6.1. Dataset for Evaluation
Synchronized video and pose datasets of multiple actions

were used for learning and evaluation. Multiview videos were
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Figure 12: Pose tracking results with volume descriptors in action set1. Red and blue points in models (i.e. 2nd-5th rows) depict sample data and particles,
respectively. The model selected for feature-to-pose regression at each moment is enclosed by a green rectangle.

captured by eight cameras at 30 fps (1024 × 768 pixels). For
obtaining the ground-truth of the pose data, a gyro-sensor based
motion capture system (IGS-190) was used. 51 dimensional
pose data (i.e. 17 3-DOF joints) was obtained at each frame.
Variables were set as follows throughout all experiments: wv =

0.5, wo = 0.5, the dimension of a latent space was 6, and the
number of particles was 500.

While only one subject was captured for learning samples,
four subjects were captured for testing data. With each subject,
three kinds of action sets below were captured:

• Set1 (four dance actions): Waving the arms by differ-
ent four ways: 1) “right-upper and left-upper”, 2) “right-
upper and left-lower”, 3) “right-lower and left-upper”, and
4) “right-lower and left-lower”. All of them shared similar
motion when the arms were waved in front of the body.

• Set2 (two gait actions): Walking and jogging actions.

• Set3 (six gait actions): 1) Walking, 2) walking slowly, 3)
walking fast, 4) striding, 5) jogging, and 6) stopping from
walking and start walking.

For evaluating the proposed models, these sequences are more
suitable than existing video and mocap datasets in terms of in-
cluding more actions in each sequence. For example, in Hu-
manEva [4], only one transition from walking to jogging is ap-
peared in each of six Combo sequences, which can be employed
for training. Our dataset contains a number of transitions be-
tween each pair of actions, which are required for validating
the effectiveness of the proposed model. 3–10 or more action
transitions are contained in each sequence, which consists of
more than 250 frames.

With each of the action sets, pose tracking was tested using
two kinds of test sequences and five kinds of models:

• Test sequence: T1) only one of actions in each action set
was performed through each sequence, where no action
transition was observed, and T2) all actions and transitions
between them were captured in each sequence. While T1
was used for evaluating the base accuracy of pose estima-
tion, T2 was used for evaluating pose estimation accuracy
during the action transitions and recovery from low accu-
racy after the transitions.

• Motion models and particles (Fig. 11): M1) all actions
are modeled in a model with no synthesized paths, M2)
topologically-constrained models proposed in [29], where
different actions are modeled so that similar poses in the
different actions are close to each other in the latent space4,
M3) actions are modeled in their respective models inde-
pendently with no synthesized paths, M4) actions are mod-
eled in their respective models independently with synthe-
sized paths but using a unimodal motion prior at each mo-
ment, where all particles propagated in a single model at
each moment, and M5) actions in their respective models
with synthesized paths using the motion priors of multiple
actions models (i.e. the proposed models).

The running times for unified modeling, M1, and indepen-
dent modeling, M5, were 88 and 8 minutes, respectively, with
T2 of set1. It is apparent that independent modeling (i.e. our
model) is superior in scalability.
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Figure 13: Pose tracking results with volume descriptors in action set3. Red and blue points in models (i.e. 2nd-7th rows) depict sample data and particles,
respectively. The model selected for feature-to-pose regression at each moment is enclosed by a green rectangle.

6.2. Pose Tracking with Volume Descriptors

This section shows experimental results with volume de-
scriptors, which are more discriminative than shape contexts.

Figures 12 and 13 show the tracking results with T2 of set1
and set3, respectively. In the figures, the latent space of each
action model and particles in it are shown in the middle part.
The leftmost images in each figure show initial frames, where
particles were distributed almost uniformly in all motion mod-
els. The particles then gathered in a proper action model by
following the motion of a subject. A correct action at each mo-
ment, which was given manually, is shown at the bottom in the
figures. It can be seen that many particles were propagated in
the model of the correct action observed at each moment. Note
that, in the dance sequences (Fig. 12), the correct actions were
overlapped because they shared similar motions.

The RMS errors of all joint positions through all frames are
shown in table 1. The results of M3, M4, and M5, all of which
are independent modeling but have different schemes for model
transition, were similar to each other in T1 of all action sets.
This is because no transition among actions was included in a
test sequence of T1. In set1, even the errors of M1 and M2
(i.e. unified modeling) were not so worse than those of M3,
M4, and M5. This is because only similar actions, which can

4All similar poses of different actions were given manually.

Table 1: RMS errors of estimated joints using volume descriptors.

(mm) M1 M2 M3 M4 M5 (proposed)
Set1, T1 23 23 20 21 24
Set1, T2 30 25 28 26 26
Set2, T1 32 29 24 23 22
Set2, T2 39 38 34 30 25
Set3, T1 35 39 28 24 23
Set3, T2 41 34 37 31 23

be correctly optimized in a unified model, were observed. In
set2, however, independent modeling (i.e. M4 and M5) was su-
perior to unified modeling (i.e. M1 and M2) because of model
optimization in each action. Note that independent modeling
without transition paths (i.e. M3) was almost worse than M2.
This might be because M3 has no mechanism for handling ac-
tion transitions, while M2 enables smooth transition between
different actions.

In set1, it can be also seen that the results of T2 & M4 and
M5 (i.e. with transition paths) were almost same with that of T2
& M3 (i.e. with no transition paths). This might be happened
because while T2 included action transitions, the different ac-
tions shared the very similar motions where model transitions
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Table 2: RMS errors of estimated joints using shape contexts.

(mm) M1 M2 M3 M4 M5 (proposed)
Set1, T1 53 52 44 40 40
Set1, T2 60 56 52 45 41
Set2, T1 48 50 46 44 41
Set2, T2 70 52 55 51 44
Set3, T1 72 76 63 59 47
Set3, T2 91 69 74 70 53

might happen; synthesized paths were not so useful in that case.
On the other hand, in set2 and set3 where several action tran-
sitions cause between dissimilar poses, the errors in T2 & M5
were smaller than those in T2 & M3 and M4. This fact proved
the effectiveness of synthesized paths and particle propagation
in multiple models. In particular, the difference between the
results of M3 and M5 proves the superiority of the proposed
method in contrast to a method with model switching such as
independent models proposed in [47].

Figure 14 shows temporal accuracy of pose estimation with
the different five models. The graphs in the figure were obtained
from T2–set3 of one subject. The results of this subject were
worse than those of other subjects probably because his gait
motion was relatively different from the training gait motion.
Throughout this test sequences, it can be seen that all the mod-
els got worse results during action transitions (i.e. C1, C2, and
C3 in the figure). It can be also seen that the models having the
mechanisms for smooth action transitions (i.e. “M2 with topo-
logical constraints” and “M4 and M5 with synthesized transi-
tion paths”) could recover from huge errors during the action
transition, in contrast to other models, M1 and M3.

6.3. Pose Tracking with Shape Contexts
Pose tracking with shape contexts, which is more challenging

than that with volume descriptors, was evaluated.

Figures 15 and 16 show tracking results of different subjects
with set1 and set3, respectively. The RMS errors of all joint
positions through all frames are shown in table 2. Examples of
temporal pose estimation accuracy are also shown in Fig. 17.
As with Fig. 14, the graphs in Fig. 17 were obtained from
T2–set3 of one subject.

As expected, the results of all conditions were worse than
those obtained by volume descriptors. Roughly speaking, in-
equality relations among the results obtained by shape contexts
were almost similar to those obtained by volume descriptors; it
can be seen that the results obtained by the proposed model and
particle tracking (i.e. M5) were better than those of the others
(i.e. M1, M2, M3, and M4).

7. Concluding Remarks

This paper proposed the motion models of multiple actions
for human pose tracking. The models are acquired from in-
dependently captured action sequences so that potential transi-
tion paths between them are synthesized. Experimental results
demonstrated that 1) independent modeling improves scalabil-
ity of the modeling and 2) the synthesized paths and particles
propagated in multiple models allow us to readily follow the
change in action for correct pose tracking.

The proposed method synthesizes the transition paths based
on simple criteria for pose similarity and basic interpolation be-
tween different poses. Additional constraints and criteria would
improve the reasonability of the paths; for example, physical
constraints for improving robustness and accuracy of detecting
transition points [51] and pruning unrealistic motions [52].

For improving efficiency of particle propagation, additional
constraints for propagating particles are effective; for example,
human biomechanics [53]. More efficient algorithms for parti-
cle filtering would be also useful; for example, [9, 10, 46].

In the proposed method, transition paths are synthesized in
the pose observation space. It is known that pose interpolation
in a latent space is more accurate than that in its observation
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Figure 15: Pose tracking results of different subjects with shape contexts in action set1.
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space [50]. Increasing accuracy of path synthesis might im-
prove pose tracking and regression during action transitions.

Furthermore, in our experiments, it was validated that simi-
lar actions (i.e. those in action set1) can be modeled even in a
single model. The fewer the number of the models, the greater
the number of particles in each model. This results in improv-
ing tracking stability. This fact suggests that the similar actions
should be grouped and modeled together for combining the ad-
vantages of separate and unified modeling.
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