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Abstract We propose a method for estimating the topol-
ogy of distributed cameras, which can provide useful in-
formation for multi-target tracking in a wide area, with-
out object identification among the FOVs of the cam-
eras. In our method, each camera first detects objects
in its observed images independently in order to obtain
the positions/times where/when the objects enter/exit
its FOV. Each obtained data is tentatively paired with all
other data detected before the data is observed. A transit
time between each paired data and their x-y coordinates
are then computed. Based on classifying the distribu-
tion of the transit times and the x-y coordinates, object
routes between FOVs can be detected. The classification
is achieved by simple and robust vector quantization.
The detected routes are then categorized to acquire the
probabilistic-topological information of distributed cam-
eras. In addition, offline tracking of observed objects can
be realized by means of the calibration process. Exper-
iments demonstrated that our method could automat-
ically estimate the topological relationships of the dis-
tributed cameras and the object transits among them.

Keywords Distributed camera calibration · Route
between fields of view · Object tracking

1 Introduction

Object tracking is a fundamental technology for realiz-
ing real-world vision systems. In particular, multi-target
tracking with distributed cameras is useful for enlarging
observation areas and observing targets from omnidirec-
tions.

For target tracking, object identification is crucial.
If fields of view (FOVs) of cameras are overlapped and
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their extrinsic parameters are known, object identifica-
tion can be simplified by analyzing consistencies in 3D
information of the observed objects. (e.g., using multi-
ple fixed cameras[1,2], omnidirectional cameras[3], and
active cameras[4,5]). Several methods for calibrating the
extrinsic parameters of widely distributed cameras have
been proposed; for example, initial calibration with ob-
servation results of moving objects (for synchronized cam-
eras[6] and asynchronized cameras[7]), a method for im-
proving the initial results[8], and calibration using land-
marks with known 3D positions measured by GPS[9].
For all of these methods, the cameras must be positioned
such that an object can move through the FOVs of the
cameras without going outside of the overall FOV bound-
aries as illustrated in Fig. 1 (a). This assumption makes
it practically impossible to employ a camera system for
observing wider areas because numerous cameras are re-
quired.

Accordingly, camera configuration without overlap-
ping FOVs, namely with blind spots (shown in Fig. 1
(b)), is necessary. Object identification in this environ-
ment is obviously more difficult than that in the overlap-
ping FOVs. In this challenging problem, the topology of
FOVs and its probabilistic information (e.g., presence of
a route, transit times, and transit probabilities between
FOVs) can improve th performance of identification (see
[10,11], for example) This information is given manu-
ally in the previous methods[10,11]. Manual estimation
is possible for a small number of cameras. However, as
the observation area grows and the number of cameras
increases, the topology becomes drastically more com-
plex. Furthermore, automatic estimation is required to
realize an online system that can update the information
to cope with hardware troubles and adapt to changes in a
scene. Therefore, a method for automatically estimating
the topology is desired.

The above discussion covers only the camera systems
with completely overlapping or isolated FOVs. In actual
applications, ‘areas in which dynamic situations should
be observed in detail from omnidirections by employ-
ing as many cameras as possible’ and ‘areas in which
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Fig. 1 FOV configuration in a distributed camera system:
Each ellipse and arrow depicts a FOV and a route, respec-
tively. Objects go along trajectories, each of which consists
of concatenated routes.
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Fig. 2 IN/OUT positions and routes of a moving object:
Each dot indicates an IN/OUT position.

comprehensive observation such as trajectory tracking is
sufficient’ are mixed in an environment. In this study,
therefore, we focused on how to automatically estimate
the topology of distributed cameras with overlapping and
isolated FOVs. We also show that offline tracking of mov-
ing objects can be achieved in the process of the calibra-
tion scheme.

2 Issues and Goals of Calibrating Distributed
Cameras

The topology of cameras can be defined by their FOVs
and the routes among and within them as follows:

FOV: The FOV of a camera is defined by a 3D region
visible from the camera as shown in Fig. 2. A region
occluded by obstacles (e.g., ‘Unobservable area’ in
Fig. 2) is outside the FOV of the camera even if the
region is within the image boundary.

Route: Events regarding entrance and exit in FOVs are
defined as follows:
IN: An event such that ‘an object that was outside

the FOV at the previous capturing timing is newly
detected’ is called IN.

OUT: An event such that ‘an object that will leave
the FOV at the next capturing timing is last de-
tected’ is called OUT.

In the example illustrated in Fig. 2, IN1, IN2, OUT1,
and OUT2 denote the positions where an object en-
ters and exits a FOV, respectively. Consecutive two
points observed at IN/OUT events compose a route.
The earlier of the two points observed is called a
beginning point. The other is called an end point.

That is, (1) each route is defined only by its be-
ginning and end points, and (2) object trajectories
between and within FOVs are not represented by
the route information. In Fig. 2, three routes (i.e.,−−−−−−−−→
IN1 · OUT1,

−−−−−−−−→
OUT1 · IN2, and

−−−−−−−−→
IN2 · OUT2, where−−→x · y

means a route from the beginning point x to the end
point y.) exist. The data observed at IN and OUT
events (i.e., image coordinates P (C) of camera C
and time T at each entrance/exit event) are called
IN data and OUT data, respectively. In this research,
all beginning and end points are represented by 2D
coordinates. That is, route information is represented
only by 2D information.

Useful information for tracking among distributed
cameras can be categorized as follows:

Class-V (Relationships between FOVs): For every
possible pair of cameras (denoted by Ci and Cj , where
subscripts i and j denote the IDs of any cameras), the
following information is provided:
V1: Presence or absence of route(s) between the FOVs

of Ci and Cj . In the example illustrated in Fig.1
(b), each of ‘C1 and C3’, ‘C2 and C3’, and ‘C3 and
C4’ has a route.

V2: Presence or absence of overlapping area(s) be-
tween the FOVs of Ci and Cj .

V3: If overlapping: the extrinsic parameters (i.e., ro-
tation and translation) between Ci and Cj .

V3 can be estimated by the above calibration methods[6–
9]. On the other hand, a method for acquiring V1 and
V2 has to be newly invented.

Class-R (Characteristics of routes): Variables C, P ,
and T with superscripts B and E denote cameras/coordinates/times
of the beginning and end points, respectively. When
IN/OUT data is observed in image coordinates P E(CE)
of camera CE at time T E, this data must be identi-
fied with the IN/OUT data of the same object, which
was observed right before T E, in order to achieve ob-
ject tracking. For this object identification, IN/OUT
data of identification candidates can be reduced as
follows; the identified data was detected (1) near the
beginning point of the routes having the end point
around P E(CE) and (2) at about T E − T if T is re-
quired to go through the route where the object was
passed. Following stochastic representations of these
constraint conditions are given as the characteristics
of a route having the end point around P E(CE):
R1: Probability that an object detected in P E(CE)

went through the route having the beginning point
P B(CB).

R2: Probability that it takes an object T E − T B to
go through route

−−−−−−−−−−−−−−→
P B(CB) · P E(CE), where T B

denotes the time when the object was observed in
P B(CB).

We call the above information the probabilistic-topology
of cameras.
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To estimate the above class-V and class-R informa-
tion, valuable information can be obtained from track-
ing results among and within FOVs (see [12], for exam-
ple). However, object identification between images ob-
served by isolated cameras only based on image analysis
(e.g., face/object recognition) is obviously very difficult.
For reliable identification among FOVs, the following ap-
proaches have been proposed:
Tracking without identification: In [13], it is assumed

that there is only one object moving in an environ-
ment during a training period. Otherwise, an object
trajectory can be obtained by observing a moving
landmark that is easily tracked (e.g., LED)[14] even
if other objects exist during a training period. These
approaches enable easy identification among isolated
cameras. Class-R information, however, cannot be es-
timated because it can only be acquired by analyzing
a number of real object trajectories.

Improving robustness of identification: In [15], ro-
bust identification between isolated FOVs is achieved
by (1) employing information only of easy-identifiable
objects and (2) matching all data of entering and
exiting FOVs by using a bipartite graph. However,
(1) sufficient class-R information is unavailable from
object information selectively obtained by this algo-
rithm and (2) a bipartite graph cannot express any
loop route from/to the same FOV and any route be-
tween overlapping FOVs.

Accordingly, several limitations in these approaches pre-
clude the acquisition of a sufficient amount of object data
required for estimating class-R information. It should
be also noted that the whole class-V information can-
not be estimated even if object identification is com-
pletely established with these approaches. In fact, these
approaches[13–15] can estimate only the positions of be-
ginning/end points of routes (i.e., V1 information and
partial R1 information).

While tracking among isolated FOVs is very trou-
blesome, large numbers of sophisticated methods have
been proposed for object detection and tracking within
a FOV (e.g., robust foreground-object detection under
non-stationary scenes[16] and occlusion-robust tracking[17]).
Even with these methods, it is still difficult to completely
avoid tracking errors due to occlusions and intersections
of similar objects. These tracking errors make it impossi-
ble to establish correct identification. However, tracking
for a short period when an object enters/exits FOVs1 is
reliable. We employ only this reliable information regard-
ing entrance/exit into/from FOVs (i.e., IN/OUT data)
for calibration of distributed cameras. Note that any ob-
ject ID is not included in IN/OUT data. This means
that our method can work even if multiple objects are
wrongly identified within a FOV at the beginning and
end points.

1 In our experiments, IN/OUT data is produced from a
tracking result for two seconds when an object is newly/last
observed in a FOV.

Route Detection (Sec. 3.2)

Pairing all IN/OUT Data (Sec. 3.2.1)

Detecting True Pairs (Sec. 3.2.2)

Removing Link-up Pairs (Sec. 3.2.3)

Probabilistic-Topology Estimation (Sec. 3.3)

Class-V information (Sec. 3.3.1)

Class-R information (Sec. 3.3.2)

Offline Tracking (Sec. 3.4)

Route Categorization (Sec. 3.1)

Fig. 3 Functional flow in Sec. 3.

The discussion in this section is summarized as fol-
low:

1. No previous approach can deduce all of class-V and
class-R information.

2. To acquire the complete probabilistic-topology of cam-
eras, a sufficient amount of actual object trajectories
should be analyzed.

3. It is difficult to deduce the complete probabilistic-
topology of cameras from unreliable results of ob-
ject tracking among isolated cameras. However, sim-
ple IN/OUT data can be acquired without errors.

We, therefore, propose a method for estimating the
probabilistic-topology of overlapping and isolated FOVs.
The method has the following characteristics:

1. Can estimate all of V1, V2, R1, and R2 information.
2. Can analyze massive observation data (i.e., IN/OUT

data) simultaneously for acquiring reliable probabilis-
tic information.

3. Can work only with simple IN/OUT data for robust
estimation.

3 Probabilistic-Topological Calibration

In our method, routes are first detected and then their
probabilistic characteristics are inferred. In this section,
first of all, Sec. 3.1 introduces a route categorization.
This categorization is employed in the processes for esti-
mating the probabilistic-topological information of cam-
eras. Sec. 3.2 describes our route detection method con-
sisting of three steps; (1) possible candidates for existing
routes are found by pairing all IN/OUT data, (2) only
true pairs, each of which is a pair of the beginning and
end points, are detected by dividing all the pairs into
several sets based on their spatio-temporal uniformities
and classifying the sets into true and false pairs, and (3)
pairs, which consist of concatenated consecutive routes,
are then removed from the remaining pairs. A way for es-
timating the probabilistic-topological information based
on the result of route detection is then described in Sec.
3.3. Sec. 3.4 shows that offline object tracking can be
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Fig. 4 IN/OUT positions in FOVs (denoted by ellipses).

collaterally achieved by means of route detection. Fig. 3
illustrates a functional flow of the procedures described
in this section.

3.1 Route Categorization for Estimating Geometric
Configuration of Routes and FOVs

Figure 4 (a)∼(d) shows all possible examples of routes
among overlapping and isolated FOVs. As mentioned
before, two consecutive IN/OUT positions compose a
route. Every route in more than two FOVs can be ex-
pressed by a combination of (a)∼(d).

From the observation of Fig. 4, all routes can be clas-
sified into five categories:

– −−−−−−→
INi · INj and −−−−−−−−−→

OUTp · OUTq, where i, j, p, and q de-
note any IDs, consist of two overlapping FOVs and
are classified as the route type below:
Type1 (Route through one of FOVs): A route in-

cluded in one of two overlapping FOVs (e.g., −−−−−−→IN3 · IN4,−−−−−−−−−→
OUT3 · OUT4,

−−−−−−→
IN5 · IN6, and −−−−−−−−−→

OUT6 · OUT5 in Fig.
4).

– −−−−−−−−→
INi · OUTj exists in FOV(s) having INi and OUTj

and is classified into two categories as follows:
Type2 (Route through a FOV): If a FOV observes

both INi and OUTj , a route goes across the FOV

IN1 OUT1
IN2 OUT2

IN3 OUT3 IN4 OUT4

FOV of C1

FOV of C4
FOV of C3FOV of C2

Fig. 5 Object trajectory through multiple included FOVs.

(e.g., −−−−−−−−→IN1 · OUT1,
−−−−−−−−→
IN6 · OUT6,

−−−−−−−−→
IN7 · OUT7, and−−−−−−−−→

IN8 · OUT8 in Fig. 4).
Type3 (Route through an overlapping area):

If different FOVs observe INi and OUTj, a route
passes through their overlap (e.g., −−−−−−−−→IN4 · OUT3 in
Fig. 4).

– −−−−−−−−→
OUTi · INj exists outside FOV(s) having INi and
OUTj and is classified into two categories as follows:
Type4 (Loop route): If a FOV observes both OUTi

and INj, a route begins and ends at the same
FOV (e.g., −−−−−−−−→OUT2 · IN2 in Fig. 4).

Type5 (Route through an invisible area): If dif-
ferent FOVs observe INi and OUTj, a route goes
through the area that is invisible from them (e.g.,−−−−−−−−→
OUT7 · IN8 in Fig. 4).

Based on the above categorization, class-V informa-
tion about the FOVs which have a route between them
can be obtained as follows:

V1: Pairs of FOVs with the routes categorized into Type1,
Type3, and Type5 have routes between them while
the routes categorized into Type2 and Type4 are in
a single FOV.

V2: Pairs of FOVs with the routes categorized into Type1
and Type3 overlap. All other pairs of FOVs do not
have any overlapping area.

For example, since all −−−−−→IN · IN and −−−−−−−−→
OUT · OUT routes

are classified into Type1, a pair of FOVs with these
routes have a route and an overlapping area. Accord-
ingly, route detection is a key issue in estimating the
class-V information of distributed cameras.

Note that the topology of FOVs, which do not have
a route between them but have an overlapping area and
an object trajectory (e.g., FOVs of C1 and C3 as illus-
trated in Fig. 5), should be also obtained for estimating
the total topology in the system. These exceptional rela-
tionships can be obtained by categorizing link-up routes,
each of which consists of successive routes. Since the link-
up routes are also obtained using our method (described
in Sec. 3.2.3), the total topology can be deduced.

In addition to estimating class-V information, the
route categorization is employed also to remove false-
detection routes (described in Process 5 of Sec. 3.2.2).

As described at the end of Sec. 2, all processes, in-
cluding route detection, in our method are achieved by
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using a large amount of IN/OUT data. As a result of
route detection, all the IN/OUT data are classified into
each route. The classified data are then employed for
estimating class-R information (described in Sec. 3.3.2).

In what follows, a practical way for probabilistic-
topological calibration will be described.

3.2 Route Detection by Analyzing the Uniformities of
IN/OUT data

3.2.1 Pairing All IN/OUT Data for Route Nomination

The beginning and end points of a route correspond to
successive IN/OUT positions of a moving object. How-
ever, temporally successive IN/OUT data observed in
the total system may be the data of different objects and
do not always compose a route in an environment with
multiple moving objects. That is, our problem is how to
find the pairs of IN/OUT data of the same object, which
are the beginning and end points of the routes, from a
number of observed IN/OUT data. A pair of IN/OUT
data that composes a route is called a True Correspon-
dence (TC). Each of all other pairs is called a False Cor-
respondence (FC).

For this problem, we focus on the following two uni-
formities in massive amounts of observed data:
Spatial uniformity (beginning and end points): In

general, moving objects go through regular routes a
number of times. In each route, therefore, a number
of IN/OUT data must be observed around both its
beginning and end points.

Temporal uniformity (transit time): Each of the cer-
tain kinds of objects (e.g., people walking, people jog-
ging, and cars) needs almost the same transit time
through a route, except situations such as stopping on
the route. This fact results in the following prospect:
If each IN/OUT data is paired with all other IN/OUT
data tentatively and the time interval between each
pair is calculated, time intervals between the pairs
of existent beginning and end points are observed
extensively. This means that routes exist between
the paired IN/OUT data and it takes one of the ex-
tensively observed time intervals to go through each
route.
According to this criterion, if objects pass through a
route at different speeds, multiple routes with differ-
ent transit times are detected. In our definition of a
route, since the difference of transit times is regarded
as a crucial factor (i.e., R2 information) for object
tracking, these routes must be detected separately.
In [18], route detection is achieved based on peak

detection using independent (sequential) analyses of the
above two uniformities:
1. Observed IN/OUT data are classified into groups based

on proximity of their positions in each image. Each
group corresponds to a beginning/end point.

OUT
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Fig. 6 FOVs and object trajectories in a scene.

2. Time intervals between IN/OUT data are voted in
each pair of the groups. In each voting result, peaks
are observed. If a peak of the voted time intervals
exists, there is a route between the positions of the
groups.

In this method, however, (1) observed positions are clas-
sified in each image without linking the positions be-
tween FOVs, (2) it is very difficult to adequately clas-
sify observed IN/OUT positions because the number of
classes is unknown, and (3) IN/OUT positions of differ-
ent adjacent routes may be wrongly classified into one
group; the class-R information estimated from this er-
ror classification is unreliable. On the other hand, our
method realizes robust route detection by classification
which simultaneously takes into account two uniformi-
ties.

For route detection based on the above uniformities,
all tentative pairs of IN/OUT data have to be collected.
With reference to Fig. 6, a procedure for collecting ten-
tative pairs of IN/OUT data is described. Figure 6 il-
lustrates an example with three cameras and two object
trajectories. First of all, massive IN/OUT data of a num-
ber of moving objects is detected. Each IN/OUT data is
then paired with all other IN/OUT data observed be-
fore its detection. The former and latter IN/OUT data
are tentatively regarded as the end and beginning points
of a route, respectively. However, pairs of IN/OUT data
with sufficiently long intervals do not have to be col-
lected. In the example shown in Fig. 6, since −−−−−−−−→

OUT4 · IN3

is the longest route, all time intervals less than the tran-
sit time of −−−−−−−−→OUT4 · IN3 should be collected as tentative
pairs2. The collected pairs of IN/OUT data are divided
into several sets depending on the FOVs that observe the
paired IN/OUT data. That is, if the beginning and end
points of a pair are observed in cameras CB and CE , re-
spectively, this pair is voted into a set of tentative pairs,
SB,E . For N cameras, NP2 + N vote sets are prepared,
where iPj denotes a permutation. For example, two cam-
eras (i.e., C1 and C2) require four vote sets, S1,2, S2,1,
S1,1, S2,2.

2 This time threshold was determined manually in our ex-
periments. Strictly speaking, this threshold should be deter-
mined depending on observation errors of IN/OUT data.
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Fig. 8 IN/OUT data pairs displayed in two observed im-
ages: Each dot and ellipse including dots denotes an observed
IN/OUT position and a beginning/end point, respectively.

In the example shown in Fig. 6, both trajectories 1
and 2 are unidirectional. If objects move in the reverse
direction, every route in the reverse trajectory is detected
as the route consisting of the inverted beginning and end
points as follows:

– In Fig. 7, IN1, IN2, OUT1, and OUT2 in the right-
pointing routes are changed to OUT ′

1, OUT ′
2, IN ′

1,
and IN ′

2 in the left-pointing routes, respectively.
– Route −−−−−−−−→

IN2 · OUT1 of the right-pointing trajectory is
detected from IN/OUT data pairs voted into S2,1. On
the other hand, the inverse route of −−−−−−−−→IN2 · OUT1 (i.e.,−−−−−−−−→
IN ′

1 · OUT ′
2) is detected from IN/OUT data pairs

voted into S1,2. That is, the inverse route is detected
from the vote set whose beginning and end points are
reversed from the vote set of the forward route.

3.2.2 Detecting TCs based on the Uniformities and
Majority of IN/OUT Data Pairs

Arrows in Fig. 8 indicate several examples of tentative
pairs obtained when observing the environment shown
in Fig. 6. Figures (a) and (b) illustrate the pairs voted
in S1,2 and S2,2, respectively. Note that

– for simplification, pairs voted into S2,1 and S1,1 (e.g.,−−−−−−−−→
IN2 · OUT1 and −−−−−−−−→

IN1 · OUT1) are not displayed, and
– just a few IN/OUT data are selectively displayed in

each beginning/end point although in fact massive
IN/OUT data of a number of moving objects is de-
tected.

FCs (e.g., ‘False correspondence’ in Fig. 8 (b)) are in-
cluded in each set Si,j where i and j denote the IDs
of any FOV. The goal of this section is to extract only

TCs and divide them into each route. The extraction and
division are achieved by classifying 5D vectors, each of
which expresses one of the voted pairs of IN/OUT data:

Process 1: Let {V 1, · · · , V Ni,j} be a set of vectors, where
V i = (xB

i , yB
i , xE

i , yE
i , ti) denote a 5D vector com-

prising the image coordinates of the beginning and
end points and the transit time between them, and
N i,j denote the total number of the ballots in Si,j .

Process 2: Elements in each vector are normalized so
that all of their ranges are from 0 to 1.

Process 3: {V 1, · · · , V Ni,j} are divided into several sub-
sets based on LBG algorithm[19]: In our method, the
division is continued until the mean of distances be-
tween all vectors in each subset and the codevector
(i.e., mean vector) of the subset is less than a prede-
fined threshold of the mean distance. The threshold
is manually set small enough to be able to discrimi-
nate between the vectors corresponding to FCs and
similar TCs. After the division, the norm of the differ-
ence between each vector and the codevector is calcu-
lated. Vectors having the norm that is more/less than
(μv +/−2.5σv), where μv and σv denote the mean and
the standard deviation of all the norms, respectively,
are eliminated. As a result, all remaining vectors in
each subset are classified into the sets of TCs or FCs.
Note that the important requirement is removing all
FCs. Therefore, even if the vectors of a route that
should be in the same subset are divided into differ-
ent subsets, this has no negative effect on employing
the acquired information for tracking. This is because
all of the divided subsets corresponding to the same
route are integrated to estimate class V and R infor-
mation of each route (described in Sec. 3.3).

Process 4: The processes mentioned above generate sev-
eral subsets from a set, Si,j . In the example shown
in Fig. 8, ‘S1,2

1 , S1,2
2 , and S1,2

3 ’ and ‘S2,2
1 , S2,2

2 , and
S2,2

3 ’ are generated from S1,2 and S2,2, respectively.
The number of the ballots is then calculated in each
subset. If the number is less than (μb − 2.5σb), where
μb and σb denote the mean and the standard devia-
tion of the numbers of the ballots, respectively, the
subset with few ballots is considered to be the set of
FCs and it is eliminated.

Process 5: Several remaining FCs can be removed based
on route categorization described in Sec. 3.1. The be-
ginning and end points of a Type1 route must be ob-
served by different FOVs. Therefore, Type1 routes,
having the beginning and end points in the same
FOV, are removed.

The above processes are performed for every set of the
tentative pairs (i.e., every Si,j). After all the processes,
all subsets with FCs are removed and only subsets with
TCs remain. These subsets are called False Corresponded
Routes (FCRs) and True Corresponded Routes (TCRs),
respectively. The TCRs between the cameras CB and
CE are denoted by RB,E =

{
RB,E

i |i ∈ {1, · · · , NB,E}
}
,
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where RB,E
i denotes one of the detected TCRs between

CB and CE and NB,E denotes the number of the routes
between CB and CE . By means of the above mentioned
TCR detection processes, the pairs of IN/OUT data are
selectively grouped into the subsets (i.e., all the sets re-
maining after Process 5), each of which shows the infor-
mation with regard to one of the TCRs (i.e., RB,E

i in
RB,E). Each subset of the pairs grouped into RB,E

i is
expressed by TCSB,E

i .

3.2.3 Removing Link-up Routes

The TCRs, RB,E , consist not only of routes but also link-
up routes introduced in Sec. 3.1. In the example illus-
trated in Fig. 8, −−−−−−−−→IN1 · OUT2, which is detected as a TCR,
is a link-up route formed by concatenating −−−−−−→

IN1 · IN2,−−−−−−−−→
IN2 · OUT1 (not displayed in Fig. 8 but detected from
S2,1) and −−−−−−−−−→

OUT1 · OUT2. All link-up routes can be re-
moved based on cooccurence of the detected TCRs:

Process 1: Let CBi and CBj denote any pair of cam-
eras, both of which have routes towards camera CE ,
including CBi = CE and/or CBj = CE .

Process 2: Let TCSBi,E
p have a voted pair with the

end IN/OUT data, which is also the end IN/OUT
data of a pair included in TCSBj ,E

q . In Fig. 8, two
voted pairs p and q have the same OUT data (indi-
cated by a) at their end points. If the transit time of
p is longer than that of q, RBi,E

p might be a link-up
route consisting of R

Bj ,E
q and other route(s).

Process 3: To verify whether RBi,E
p is really a link-up

route involving RBi,E
q , voted pairs in TCSBi,E

p and
TCSBj ,E

q , that have the same relationship with that
of p and q, are checked. First of all, the number of
the voted pairs in TCSBi,E

p and TCSBj ,E
q , which

have the same IN/OUT data at their end points,
is counted. The rate of the counted number in the
smaller one of the two sets (i.e., TCSBi,E

p or TCSBj ,E
q )

is then calculated. If the rate is over a predefined
threshold3, RBi,E

p is regarded as a link-up route and
removed from RBi,E .

These processes are performed such that every camera is
regarded as camera CE in the above processes.

Finally, all routes are detected by the procedure de-
scribed in Sec. 3.2.

3 In our extensive experiments, the rate in a link-up route
and its segment is over 90% while that in two independent
routes is less than 10%. The method for removing link-up
routes is, therefore, very robust.

3.3 Estimating the Probabilistic-Topology

3.3.1 Acquiring Class-V Information based on
Categorizing the TCRs

With the processes described in Sec. 3.2, all routes and
link-up routes (i.e., TCRs) among the FOVs of all cam-
eras are detected. As described in Sec. 3.1, therefore, V1
and V2 can be estimated by comparing the types of the
detected TCRs with the five categories.

3.3.2 Acquiring Class-R Information from the
Categorized Routes

In each route Ri, where i denotes the ID of routes, the
mean (x, y) coordinates of the beginning and end points
(denoted by μB

i , μE
i ) and their covariance matrices (de-

noted by ΣB
i , ΣE

i ) are calculated. With the mean co-
ordinates, the covariance matrices, and the number of
pairs voted into Ri (denoted by Nvi), the probability
that an object was lastly observed at P B(CB) before it
is newly detected at P E(CE) (this probability is denoted
by PR1(P B(CB), P E(CE))) can be estimated as follows:

1. Let R·,E = R·,E
1 , · · · , R·,E

N ·,E denote all routes with
the end point in the FOV of CE , where N ·,E is the
number of these routes. The probability that the end
point of R·,E

i is P E(CE) at which an object is newly
detected is calculated by substituting μE

i and ΣE
i of

R·,E
i and P E(CE) for the equation below:

Q(P ; μ, Σ)

=
1

(2π)
d
2 |Σ| 12

exp
(
(P − μ)T Σ−1(P − μ)

)
(1)

Let S be the total sum of Q(P ; μ, Σ) multiplied by
the number of pairs, namely,

S =
N ·,E∑
i=1

Q(P E(CE); μE
i , ΣE

i )Nvi.

Then,
(
Q(P E(CE); μE

i , ΣE
i )Nvi

)
/S can be consid-

ered to be the probability that the end point of route
R·,E

i is regarded as the position of new detection at
P E(CE) (denoted by P (P E(CE), R·,E

i )).
2. Let RB,E = RB,E

1 , · · · , RB,E
NB,E denote a subset of

R·,E , which has the beginning point at the FOV of
CB . In a similar way to the above process, the prob-
ability that the beginning point of RB,E

j is P B(CB)
(this probability is denoted by Q(P B(CB); μB

j , ΣB
j ))

is calculated by equation (1).
3. The total sum of Q multiplied by P of the same route

is the probability that means R1:
PR1(P B(CB), P E(CE))

=
NB,E∑
x=1

P (P E(CE), R·,E
x )Q(P B(CB); μB

j , ΣB
j )



8

V1

V8

V6

V4

V3

V2 V10

V9

V7

V12

V11

Obstacle
V5

Fig. 9 View from above of the scene for simulation experi-
ments.

With this procedure, R1 regarding every pair of the be-
ginning and end points can be estimated.

R2 can be estimated from the mean and variance
of the transit times in the IN/OUT pairs voted in Ri

as follows. Q(T ; μB,E
i , σB,E

i ) calculated by equation (1)
indicates the probability that an object spends T for
crossing route Ri. That is, Q(T ; μB,E

i , σB,E
i ) means R2.

When a tracking system uses class-R information,
two probabilities, PR1 and PR2, are multiplied. The prod-
uct is regarded as the probability that an object leaves
the FOV of CB from P B(CB) and directly reaches the
FOV of CE at P E and its transit time is T .

3.4 Offline Object Tracking from IN/OUT Data Pairs
in TCRs

The pairs of IN/OUT data are voted in Sec. 3.2. Each
pair grouped into a set of TCs is considered to com-
prise successive IN/OUT data of the same object, which
make a route. This means that the voted pairs in a set of
TCs provide the results of object identification between
and within FOV(s). Accordingly, offline tracking can be
achieved in the process of route detection. Note that

– false-positive identifications are detected when two or
more objects pass through a route side by side and
go through the near beginning/end points of different
routes almost simultaneously, and

– correct identifications cannot be established when an
object passes through an irregular trajectory at an
irregular interval.

4 Experimental Results

4.1 Simulation Experiments

We conducted simulation experiments to confirm the ro-
bustness of the proposed method against three undesired
phenomena. An experimental scene is illustrated in Fig.
9. Each rectangle Vi and dotted line indicates a FOV
(i.e., its area observed by 640× 480 pixel) and an object
trajectory, respectively. While only the trajectory from

V10

V11

V10

V11

P1

P4

P1

P’

P4

P’’

P’4

2P3

P2

V9 V9

2

P
1

P
2

V1
P
1

P
2

V1
P
1

P
2

P’
2

P’
1

V8
V5

V6

(a) Experiment 1 (b)
Experiment 2 (c) Experiment 3

Fig. 10 Examples of the rise and fall of detected routes.

V1 to V3 is a one-way path, objects move bidirectionally
on all other paths. In this environment, the number of
routes is 78 (37 bidirectional routes and 4 unidirectional
routes) if all observation conditions are ideal such that
objects move just along the dotted line and their trajec-
tories are observed without any image noise.

Experiment 1: Fluctuate the coordinates of IN/OUT
positions: This causes the fluctuations of the begin-
ning and end points of each route and destroys their
uniformity.

Experiment 2: Fluctuate the velocities of objects: This
causes the fluctuations of the transit time of each
route and violates its uniformity.

Experiment 3: Increase the number of moving objects
simultaneously in the environment: This increases FCs.

The results of the experiments are presented in Table 1
with the following data:

number of routes: ‘+’ and ‘−’ indicate the rise and
fall of the number of detected routes from the ideal
number, respectively. Underlined values indicate the
number of remaining FCRs.

successful tracking: Success rates (%) of offline track-
ing are shown.

The upper rows in tables (1), (2), and (3) denote the
variance of observed (x, y) coordinates, the variance of
object velocities, and the mean value of objects observed
in each image at each moment, respectively. In order to
verify only the influence of each varying parameter, each
experiment was conducted under the conditions below
except the varying parameter: ‘the variance of coordi-
nates is 1’, ‘the variance of object speed is 1’, and ‘one
object is in a FOV at each moment’. Note that the suc-
cess rate of tracking is shown only in the results of ex-
periment 3; in experiments 1 and 2, all objects could be
easily identified because only one object was observed at
each moment.

With a sufficient number of IN/OUT data (about
10 thousands × the number of simultaneously observed
objects), our proposed method was executed. Figure 10
shows examples of the results:

Fall in experiment 1 (Fig. (1)): IN data voted into
the end points of two ideal routes from V9 to V10 (i.e.,
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Table 1 Changes in the number of routes.

variance of coordinates 0 2 4 8 16 32

number of routes ±0 ±0 ±0 +2,−2 +2,−11 +2,−12
(1) Fluctuation of detected positions

variance of velocities 0 2 4 8 16 32

number of routes ±0 ±0 ±0 +1 +5 +11
(2) Fluctuation of object velocity

number of objects 1 2 4 8 16 32

number of routes ±0 ±0 ±0 ±0 +1 +10
successful tracking (%) 100 100 100 99 94 86

(3) Frequency of object detection

−−−−→
P1 · P2 and −−−−→

P1 · P3 in the left figure of Fig. 10 (1))
were observed with overlap around P2 and P3. These
two route then merged into

−−−−→
P1 · P ′

2 in the right-hand
figure.

Rise in experiment 1 (Fig. (1)): Several observed tra-
jectories from P3 to P4 did not pass through V11 due
to fluctuation. As a result,

−−−−→
P ′′

2 · P ′
4 in the right-hand

figure were newly generated.
Rise in experiment 2 (Fig. (2)): −−−−−−−−−−→

INP ′
1
· OUTP ′

2
in the

lower figure of Fig. (2) derived from −−−−−−−−−−→
INP1 · OUTP2

due to the fluctuation in the time intervals between
the beginning and end points.

Rise in experiment 3 (Fig. (c)): Since a number of
IN/OUT data was observed for a short time, FCR−−−−→
P1 · P2, whose beginning and end points were both
IN data, remained in the result of route detection.
Due to this error, the overlap between V6 and V8 was
detected by mistake.

From these results, we can see the following observa-
tions regarding the characteristics of the proposed method:

Experiment 1: The fluctuation in the coordinates of
IN/OUT positions yields both the rise and fall of de-
tected routes.

Experiment 2: The fluctuation in the velocities of ob-
jects yields only the rise of detected routes.

Experiment 3: The increase of objects yields the rise
of FCRs. The results are robust as long as the number
of objects does not increase drastically.

While the rise and fall of detected routes change depend-
ing on a threshold of LBG for classifying 5D vectors, the
characteristics mentioned above are invariable. All the
rise and fall of routes except those of FCRs are induced
by the rise and fall of the grouped IN/OUT data due to
fluctuations of IN/OUT positions. These rises and falls of
the detected routes, as well as those depending on thresh-
olding in LBG, do not have an adverse effect on tracking
with the estimated topology of FOVs. The FCRs, on the
other hand, violate the topology of FOVs because nar-
rowing down the possible trajectories of target objects
may fail.

It can be also confirmed that offline tracking based
on route detection is very robust except in the case of a
large number of objects.

4.2 Experiments with Real Distributed Cameras

We conducted experiments using a real system with 12
cameras (C1 ∼ C12). The cameras captured 320x240
pixel RGB images at 1 sec intervals. The experimen-
tal environment and the image examples are shown in
Fig. 11. While the images were observed during day-
time hours, many office workers and students engaged
in everyday activities in the environment. All the people
walked in the environment at various speeds. At each
moment when at least one object was observed in one of
12 cameras, 2.7 persons on average were observed simul-
taneously in the environment.

Object detection was implemented with a simplified
version of [16]. All detected pixels were then grouped into
each object region based on connectivity of the detected
pixels. Each detected object region is identified with ob-
ject regions in the previous frame based on proximity.
The numbers of IN/OUT data observed by C1 ∼ C12

were 7238, 7910, 11789, 13782, 12376, 6792, 7067, 7856,
8178, 12574, 12456, and 12786, respectively. Some of the
detection and tracking results included errors, for exam-
ple, two or more persons were regarded as one person.
However, these errors had less harmful impact on our
method because IN/OUT data is free from object IDs.

From all the above IN/OUT data, 130 routes (59
bidirectional and 12 unidirectional routes). The mean
of pairing IN/OUT data voted into each TCR was 2139.
Examples of the detected routes are shown in Fig. 12.
Arrows and ellipses indicate the detected routes and the
distributions of their beginning and end points, respec-
tively. The width of the arrow is in proportion to the
number of pairing IN/OUT data voted into the arrow.
Although the beginning and end points are generated for
each route, their ellipses, which are close to each other,
are merged in the figure for viewability.
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Fig. 11 View from above of the scene and image examples (Left: 1st floor, Right: 2nd floor).
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Fig. 12 Examples of detected routes.

From information of the detected routes, the follow-
ing pairs of FOVs are considered to have routes and over-
lapping areas:

With routes (V1): C1-C2, C1-C2, C2-C4, ‘all possible
pairs of C3, C4, C5, C10, C11, and C12’, C6-C7, C7-C8,
C7-C9 and C8-C9.

With overlapping areas (V2): C1-C2, ‘all possible pairs
of C3, C4, C5, C10, C11, and C12’, C6-C7, and C8-C9.

Some examples of the estimated class-R information
are as follows:

R1: The mean and variance of point ‘A’ in C5 of Fig.
12 were (56.1, 71.8) and (4.1, 2.2), respectively.

R2: An integer with each arrow refers to the mean of
transit times (seconds) in each route.

Finally, the effectiveness of offline tracking was ver-
ified. 300 object transits between FOVs were selected
manually from the observed sequences. By comparing
them with the results of offline tracking, two incorrect
identifications were found. These were caused by errors
in detecting object regions from observed images. For
example, one of the errors was caused when an object
moved through the upper part of C5 of Fig. 12. Since its
transit time was very short and the capturing interval
was long (i.e., 1 sec.), object detection and tracking in
this route were liable to fail.

5 Concluding Remarks

We proposed the probabilistic-topological calibration of
widely distributed cameras. With the proposed method,
(1) the relationships among the FOVs of the cameras and
(2) the probabilistic representations of the beginning and
end points and the time intervals between the points can
be estimated.

We are studying the following improvements:

– Automatic thresholding in dividing IN/OUT data pairs
for more robust route detection.

– FCRs in the same FOV can be removed by checking
the results of continuous tracking within the FOV.

– In the experiments shown in this paper, every tra-
jectory was restricted in a narrow area (e.g., a pas-
sage way) and could be simply expressed as a line. If
each FOV is wider, on the other hand, the routes of
freely moving objects in a large open area have large
variations of their beginning and end points. A new
solution may be required for this situation.
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