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Abstract

In this research, we focus on how to track a target
region that lies next to similar regions (e.g., a forearm
and an upper arm) in zoom-in images. In our method,
a group of feature points in a target region is extracted
and tracked as the model of the target. Small differ-
ences between the neighboring regions can be verified
by focusing only on the feature points. In addition, (1)
the stability of tracking is improved using particle fil-
tering and (2) tracking robust to occlusions is realized
by removing unreliable points using random sampling.

1 Introduction

High-resolution images of a target object can im-
prove the performance of various existing image-
analysis algorithms. In particular, high-resolution im-
ages of human parts (e.g., a face, a hand, a fore-
arm, and a tiny part of them) are useful in order
to observe facial expression, hand/finger motion, and
other minute motions and features. Continuous high-
resolution imaging of a moving target can be realized
by using a pan-tilt-zoom (PTZ) camera. For zoom-in
observation with the PTZ camera, the following two
techniques are required:

Tracking Continuously extract the region of the tar-
get in observed images.

Camera-control Continuously control the PTZ cam-
era for capturing the target within the images.

If tracking is successful, a previously proposed camera-
control algorithm (e.g., [1, 2]) is applicable to contin-
uous high-resolution imaging regardless of the type of
the target. We, therefore, focus on how to track a par-
tially observed region of a moving object in real time.

Template matching is widely used for tracking (see
[3], for example). Although it is applicable to any ob-
ject tracking, the similarity can be high not only in
the correct region of a target but also in its neighbor-
ing regions with textures similar to those of the correct
region. Tracking using SNAKE[4], which searches for
the boundary line of a target based on edge lines and
their smoothness, is also inapplicable to tracking body
regions with similar textures between which there is no
edge line. Mean-shift[5] is also one of the famous real-
time tracking algorithms. While this method is robust
against deformation of a target shape, mistracking be-
tween similar neighboring regions is not avoidable be-
cause this method employs only a color histogram.

For zoom-in tracking, in this research, a set of fea-
ture points in a target region is regarded as a tracking
target. The difference between similar neighboring re-
gions can be expressed well by focusing only on charac-
teristic feature points. Point tracking is one of major

problems (e.g., stereo vision and shape from motion)
in Computer Vision. In [6], for example, the Lucas-
Kanade algorithm is analysed in detail in terms of com-
putational complexity and stability. Tracking robust to
specular highlights and lighting changes[7] is also im-
portant. Our method proposed in this paper is peculiar
in terms of the following two characteristics:

Accept small drifts: Unlike point tracking algo-
rithms for 3D reconstruction, a small drift is accept-
able in our objective. This is because points might
be included in the target region even when small drifts
occur. In this research, therefore, the stability of track-
ing should be improved in exchange for the decline of
precision. We employ particle filtering[8] for robustly
tracking feature points with updating template images.

Explicitly remove outlier points: As with our
approach, particle filtering is used to track a set of
points in [9]. In [9], however, all points are evalu-
ated equivalently for calculating the likelihood of each
particle. This results in tracking failure when one or
more of feature points are invisible due to occlusions.
This problem can be solved by removing these occluded
points from each particle.

2 Tracking with Particle Filtering

In particle filtering, a target region is represented
as a state vector. A set of particles, each of which
corresponds to a state vector, is distributed in order
to find the target region. Let {s(1)

t , · · · , s(N)
t } and

{π(1)
t , · · · , π(N)

t } be the set of the particles at time t and
their likelihoods, respectively. With them, the target
region at t is determined and the particles at t + 1 are
generated as follows:

1. Likelihood calculation: Likelihood π
(i)
t of s

(i)
t

in an image observed at time t is calculated.

2. State estimation: The region of the target in the
observed image is estimated from the state vec-
tors of the particles and their likelihoods (e.g., the
weighted mean the state vectors).

3. Sampling: New particles s
(i)
t+1 are generated

based on the likelihoods of the particles at t.

4. Drift: s
(i)
t+1 are shifted based on the motion dy-

namics of the target.

3 Feature Points Tracking with Parti-
cle Filtering

The basic scheme of our method is based on tracking
with particle filtering[8] described in Section 2. The
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Initial frame  (Section 3)

1. Detecting feature points

2. Generating template images

3. Generating template coordinates

State estimation (Section 2)                        

Likelihood measurement  (Section 4)

1. Computing the similarities of images

2. Computing the similarities of coordinates

3. Removing outlier points

4. Estimating the likelihood

Templates update  (Section 3)

1. Updating template images

2. Updating template coordinates

Sampling, Drift, Diffuse (Section 2)

Figure 1: Process flow of feature points tracking.

characteristic issue of our method is how to calculate
the likelihood of each particle as follows: Its process
flow is shown in Figure 1. The distinctive feature of
our method is outlier elimination.

Assume that the region of a target is given at an
initial frame. At this frame, several feature points
in the initial region are extracted by using [10]. A
set of these points is regarded as a target being
tracked. The state vector S of each particle is ex-
pressed with image coordinates of all the points, de-
noted by (x1, y1), (x2, y2), · · ·, and their average veloc-
ity, (vx, vy), as follows:

S = [ x1 y1 x2 y2 · · · vx vy ] (1)

Assume that the points have the following natures:

• The change in the local image around a feature
point is small at a small interval.

• The change in the geometric configuration of fea-
ture points is small at a small interval.

With these natures, two templates below are used:

Template image Local image around each point.

Template coordinates xy coordinates of each point.

These templates are obtained at an initial frame and
they are dynamically updated. The likelihood of each
particle is calculated by integrating the following two
values (described in detail in Sec. 4):

Image similarity Similarity between the local image
around each point in a particle and the template
image of the point.

Coordinates similarity Similarity between the geo-
metric configurations of the points in the template
coordinates and each particle.
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Figure 2: Weighted similarity function (dotted line: sin
curve, solid line: a weighted similarity).

As with the previous tracking algorithm using par-
ticle filtering[8] described in Section 2, the weighted
mean of the particles is regarded as the state of the
target (i.e., the estimated points). Sampling and drift
of our algorithm are also similar to those of [8]. The
estimated velocity of the target (i.e., vx and vy in a
particle) is used to shift the particles in the current
frame.

Although the appearance of the target object in
observed images change as it moves, careless update
of the templates incurs mistracking. In our method,
therefore, the image templates are updated not only
using the updated template but also using the ini-
tial template as proposed in [3]. The template im-
age is updated if both of the following two conditions
are satisfied[3]: (1) the similarity between the current
template image and the local image around the esti-
mated point is higher than a threshold and (2) the
maximum similarity between the local image around
the estimated point and the images that are obtained
by rotating, translating, expanding, and shrinking the
initial template image is higher than a threshold. The
template coordinates are also updated in the same way
with updating the template image.

4 Likelihood

This section describes how to compute the likelihood
of each particle with two similarities in Sec. 4.1 and 4.2
and outlier removal that overcomes small deformation
of points and occlusion in Sec 4.3.

4.1 Similarity of Feature Points

The image similarity is evaluated by the SAD (Sum
of Absolute Difference). The computed SAD is nor-
malised (i.e., from 0 to 1) by the template size and the
maximum value of the intensity range.

Note that even the position of each feature point in
the best particle might be a little different from the
true position. Since even the small difference results
in the significant decrease of the image similarity (i.e.,
SAD), the similarity of the best point might be acci-
dentally lower than that of another point. To cope with
this problem, the similarity is determined so that the
similarity decreases drastically at some distance from
the true position as illustrated in Figure 2. The prac-
tical image similarity of point p in particle i, Ip(i), is

39



Affine transformation

Template coordinates Template coordinates 

transformed with A(i) 

A(i)

T
p

P
p
(i)

Α(i)Τ
p

Coordinates in particle i

dis
p
(i)

Α(i)Τ
p

P
p
(i)

Figure 3: Affine transformation of points.

calculated by the following equation:

Ip(i) = 2v sin
(

π

2
0.5
h

cp(i)
)

if cp(i) ≤ h (2)

Ip(i) = 2(1− v) sin
(π

2
(cp(i)− (2h− 1))

)
+ (2v − 1)

if cp(i) > h (3)

where cp(i) = 1− “the normalised SAD”, and h and v
are constants1 indicated in Figure 2.

4.2 Similarity of Geometric Configura-
tions

The similarity of geometric configurations is calcu-
lated by comparing the template coordinates and the
coordinates of points in each particle. As illustrated in
Figure 3, let Pp(i) and Tp be the coordinates of point
p in particle i and the coordinates of point p in the
template coordinates, respectively. Note that the cor-
respondence of points between Pp(i) and Tp is known.
First, the affine parameters A(i) between Pp(i) and Tp

is estimated, and then Tp is transformed using A(i) as
illustrated in the right-hand of Figure 3. The distance
disp(i) between the transformed coordinates A(i)Tp

and Pp(i) is obtained by disp(i) = |A(i)Tp − Pp(i)|.
With disp(i), the coordinates similarity Pp(i) is ex-
pressed by the following formula:

Pp(i) =
1

disp(i) + 1
(4)

4.3 Removing Outlier Points

Using the image and coordinates similarities Ip(i)
and Pp(i), the likelihood of particle i is estimated by(∑N

p=1 ep(i)
)

/N , where N is the number of the feature
points in each particle and ep(i) = Ip(i) · Pp(i).

ep(i) is very low in a position far from its true po-
sition and a position occluded by another object. We
call such a point an outlier point. In general, the former
problem (i.e., a wrong position) can be easily resolved
by distributing a large number of particles in order
to prepare the one in which all points are located in
their correct positions. As the particles increase, how-
ever, the computational speed declines. Furthermore,
the latter problem (i.e., an occluded point) cannot be
solved by boosting the particles. In our method, there-
fore, the likelihood of a particle is evaluated without
points, each of which has an extremely low value.

1In our experiments, h = 0.8 and v = 0.9.

Affine parameters, required for computing the coor-
dinates similarity, can be estimated from at least three
corresponding points. If one or more outlier points
are included in the corresponding points, the estimated
affine parameters produce the transformed points, all
of which are far from the points in the particle. If no
outlier point is included, ep(i) may be low only in the
outlier point(s). Outlier removal is, therefore, imple-
mented by robust estimation using random sampling
as follows:

Step 1 Select random three points in a particle and
estimate the affine parameters between them and
the template coordinates.

Step 2 Transform the template coordinates using the
affine parameters.

Step 3 Calculate e1(i), · · · , eN (i) and select their me-
dian value, emed(i).

Step 4 Repeat Steps 1, 2, and 3 k times and consider
the maximum emed(i) to be the one that corre-
sponds to the optimal affine parameters.

Steps 1, 2, and 3 should be repeated so that no
outlier point is included in at least one combination
of the selected points. The probability that at least
one combination without outliers is selected (denoted
by P )2 is determined[11] by P = 1 − {1− (1 − ε)F }k,
where ε and F denote the ratio of outlier points in all
the feature points and the number of selected samples
(i.e., three in our case), respectively.

Finally, outlier points are removed using the optimal
affine parameters as follows:

Step 1 Calculate e1(i), · · · , eN(i) using the optimal
affine parameters

Step 2 Compute the standard deviation of
e1(i), · · · , eN (i) (denoted by σ).

Step 3 Remove points, each of whose ep(i) is at a dis-
tance of over 2.5σ from the average, from the par-
ticle i and then evaluate its likelihood.

5 Experiments

We conducted experiments using a PC (Pentium4
3.0GHz) with 1024 × 768 pixels images captured at 30
fps. In all the experiments, the number of particles,
the number of points in a particle, and the size of a
template image were 1000, 7, and 15 × 15, respectively.
With these conditions, our method worked at 25 fps.

For comparative experiments, the following four
methods were examined:

Method1 Template matching with SAD evaluation.

Method2 KLT tracker[6].

Method3 Points tracking using particle filtering
WITHOUT removing outlier points.

Method4 Proposed method: Points tracking using
particle filtering WITH removing outlier points.

2In our experiments, P was 0.95.
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(1) Template matching

(2) KLT tracker

(3) Proposed method without outlier removal

(4) Proposed method

Figure 4: Uncharacteristic part tracking.

Figure 5: Partially-occluded part tracking.

One of the advantages of our method is to be able
to track a target region neighboring similar regions as
shown in Figure 4. The target region is enclosed by a
rectangle. The results of Method1 stayed at the same
area in the observed images while the arm translated.
Method2 and Method3 lost track of the target region
in midstream. Our proposed method could track the
target region until the last frame.

The second advantage of our method is to be able to
track a region partially occluded. As shown in Figure
5, our method could track the face region without even
when/after the face partially got out of the image and
the hand partially obscured the face.

We conducted experiments for quantitative compar-
ison (Table 1). For three targets (a white shirt, a
textured shirt, a face with partial occlusions), five se-
quences consisting of 50 frames were prepared. True
regions of the target were given by hand and com-
pared with the tracking results; a result overlapping
over 80% with the true region is regarded as a suc-
cessful result. While the results of textured pattern
tracking were equivalent, our method was superior to
the others in tracking the white shirt and the face with
occlusions.

6 Concluding Remarks

We focused on how to track an uncharacteristic re-
gion and proposed a points tracking method using par-
ticle filtering with removing outlier points. Future
work includes the following aspects:

Speed-up In an algorithm with particle filtering,
speed performance is critical because the robust-
ness improves as the number of particles increases.
The random sampling algorithm should be im-

Table 1: Quantitative comparison: success rate of part
tracking.

1. white 2. textured 3. face
Method1 64.5% 71.9% 84.2%
Method2 73.5% 92.5% 88.8%
Method3 84.3% 94.1% 89.8%
Method4 87.7% 94.2% 96.3%

proved because its computational time makes up
a larger percentage of the total.

Template update Our method employs the template
update algorithm proposed in [3]. This algorithm
compares not only a current template but also an
initial template with a current observed image in
order to avoid drift in selecting a new template.
Employing the initial template, however, prevents
matching with a significantly deformed image. A
more sophisticated way is, therefore, required for
robust and high-speed tracking.

Grouping To track points distributed in multiple
limbs, the points must be grouped based on their
motions, as with the rigid-motion based grouping
algorithm[12].
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