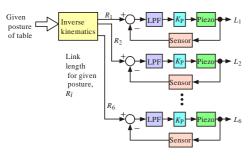
パラレル機構を用いた走査型 プローブ顕微鏡用微動ステージ

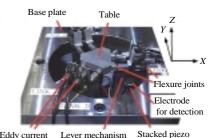

ナノメータオーダの加工を目的とした加工機の 重要な要素の一つに微動テーブルがある. 市販 の走査型プローブ顕微鏡は、チューブ型圧電素 子を用いているため、自由度が低い。本研究では、 スチュワート型パラレル機構を用いて6自由度微 動ステージを試作し、誘導電荷フィードバック法に より変位を制御した.

可動範囲は100×100×20μm, 固有振動数はz軸 方向で75Hzであった. 走査速度が高く取れるよう にxv方向の剛性を高め、高いz軸方向の分解能が 得られるように、xy平面とリンクのなす角度を6°に した.

各リンク長を制御することでテーブル変位を制 御するセミクローズドループ方式とした. テーブル の目標位置および姿勢は、逆運動学を解くことで 各軸の長さに分解される.

誘導電荷フィードバックによりテーブルの運動を 制御した結果、変位フィードバックと同等の運動 精度が得られた.

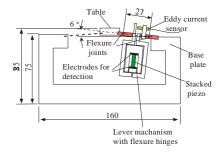
試作したステージを用いて原子間力顕微鏡を構 成し、フォースカーブを測定した.これを用いて運 動精度を測定した結果、z軸方向で16nm(σ)の繰 返し精度を持つことが明らかになった.また, 20 x 20μmの範囲で直線性のよい回折格子像が 観察された. しゅう動部がないため、真空中でも使 用可能である。

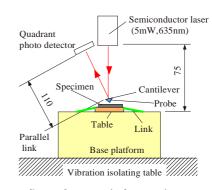


JRL: http://www.toyota-ti.ac.jp/Lab/Kikai/5k60,

Block diagram of control system

Cross-talk ratio


Feedback	Cross talk ratio		Pitching error
	x/y	z/y	μrad
None	19.6	8.2	12
Displacement	11.7	3.9	17
Induced charge	3.5	4.7	17


Eddy current displacement

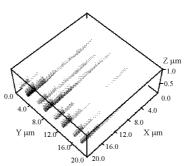
Lever mechanism with flexure hinges

Appearance of device

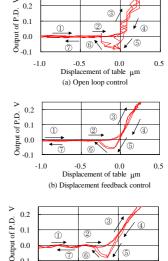
Sectional view

Setup for atomic force microscope

Size: 160×160×85 mm Mass of table: 24 g


Movable range:

Specifications


 $100 \, \mu \text{m in } xy$, $20 \, \mu \text{m in } z$ Resonance frequency:

100 Hz in xy, 75 Hz in z Degrees of freedom: 6 Actuators: Piezoelectric actuators

Magnification: 12.5

AFM image of diffraction gratings

0.0 -0.1

Force curve on Silicon

Displace (c) Induced charge feedback control

nent of table

0.5