時間分解分光測定を用いた光触媒の キャリアーダイナミクス

量子界面物性研究室

山方 啓

可視から中赤外の過渡吸収を測定すると、光触媒中に生成した光励起電子と正孔の動きや、エネルギー状態の変化を調べることができる.ここでは、光触媒にPtやCoO_x助触媒を担持すると、電子や正孔がそれぞれの助触媒に移動し、電荷分離が促進されることで再結合が抑制される様子を観察した結果について報告する.

(1) はじめに

太陽光を用いて水から水素を製造できる光触媒が注目されている.この光触媒を用い て製造した水素は、二酸化炭素を排出しないうえ、貯蔵や運搬が容易なため、エネルギ ー問題や環境問題の解決に役立つことが期待されている.このような水を分解できる光 触媒には、これまでに多くの材料が開発されてきた.しかし、実用的に用いるためには、 さらに活性を向上させることが大きな課題となっている.光触媒の活性を向上させるた めには、助触媒を担持させることが有用である.Pt や NiO, CrO_x/Rh は水素発生を促進 し、RuO_x, IrO₂, Co-Pi, CoO_xは酸素発生を促進する助触媒として知られている.助触媒 の役割は、水素発生や酸素発生の過電圧を下げるだけでは無く、電子や正孔を捕捉し、 再結合を抑制すると考えられている.過電圧の減少効果は、電気化学的手法を用いるこ とで調べられてきたが、光励起キャリアーの動きに関する情報については、まだ分かっ ていないことが多い.これらの情報は、より活性の高い光触媒を開発するために重要で ある.

時間分解分光測定は、半導体のバンドギャップを励起して生成した光励起キャリアーの動きやエネルギー状態を調べる上で非常に有力な手法である.特に赤外域の分光測定は、光励起電子の動きを調べる上で有用である.伝導帯に励起された自由電子や浅いトラップに捕捉された電子はFig. 1Aに示すように中赤外域に構造の無いブロードな過渡

吸収を与える. この赤外域の過渡吸収の 減衰過程を解析することで, TiO₂や NaTaO₃, SrTiO₃, WO₃などの光触媒におけ る光励起キャリアーの再結合過程だけで は無く,酸素分子やメタノール分子への 電子移動や正孔移動過程を調べることが できることが報告されている. 一方,正 孔は紫外から可視域にFig. 1Cのような

Fig. 1 Schematic transient absorption spectra of free or shallowly trapped electrons (A), trapped electrons (B), and trapped holes (C) observable in visible to IR regions.

吸収を与え, TiO₂では 360, 450, 520 nm に, そして, \cdot -Fe₂O₃では 580 nm に正孔によ る過渡吸収ピークが現れることが報告されている.しかしながら,これらの可視域と赤 外域の分光測定は,これまで別々の研究グループによって実験が行われてきた.このた め,光触媒中に生成した光励起電子,あるいは,正孔の挙動だけが観測されてきた.そ して,助触媒担持による電子の減少速度の増加や正孔の減少速度の増加は,助触媒によ って光励起キャリアーが捕捉されたと解釈され,助触媒を担持することによって再結合 が促進される可能性はほとんど無視されてきた.しかしながら,光励起キャリアーの動 きを正確に理解するためには,電子だけでは無く,正孔の動きも同じ条件で観察する必 要がある.そのため,我々は,可視から赤外域の広い波長領域を測定できる分光装置を 制作し,過渡吸収測定を行った.このような広い波長領域における過渡吸収測定は,電 子や正孔のエネルギー状態や動きに関する詳細な情報を与える.本研究では,LaTiO₂N 光触媒にPtやCoO_xを担持して光励起キャリアーの挙動を調べた.CoO_xを担持したLTiO₂N は 600 nm 以下の可視光を吸収し,約 30%という非常に高い量子効率で水を酸化させる ことができる.この助触媒の効果を詳しく検討した.

(2)時間分解分光装置

マイクロ秒領域の時間分解測定は, Fig. 2 に示す装置を用いて行った.可視域と近赤 外域の測定は,拡散反射配置で行った.光源にハロゲンランプを用い,サンプルに集光 させた後に,散乱してきた光を分光器で単色

化したのち,シリコンフォトダイオード (400[~]1000 nm,25000[~]10000 cm⁻¹)と InGaAs (1000[~]1700 nm,25000[~]6000 cm⁻¹)で検出 した.そして,レーザー光照射に伴うプロー ブ光の強度変化をデジタルオシロスコープで 記録した.赤外域の測定は透過配置で実験を 行い,光源からの赤外光をサンプル上に集光 し,透過した光を分光器で単色化し,これを MCT (1700[~]10000 nm,6000[~]1000 cm⁻¹)で検 出した.光触媒粉末は CaF₂ 基板上に固定し, これに Nd:YAG レーザーの三倍波(355 nm,パ ルス幅 6 ns,繰り返し周波数 1[~]0.01 Hz)を 照射しバンドギャップを励起した.

フェムト秒時間分解赤外分光測定は Fig. 3 に示すポンププローブ法を用いた.レーザー の基本波にはチタンサファイヤ再生増幅器 (800 nm, パルス幅 90 fs, 繰り返し周波数1

Fig. 2 Home-built time-resolved visible, NIR and IR absorption spectrometers.

Fig. 3 Femtosecond time-resolved IR spectrometer.

kHz)を用い,光パラメトリック発振と差周波発生により波長変換した光をポンプ光(300 ~ 2500 nm) とプローブ光(4000 ~ 1000 cm⁻¹) として用いた.サンプルを透過した赤外 光は分光器で分散させたのち,128 ch の MCT アレイ検出器で検出した.赤外光パルスの揺らぎによる S/N 比の低下を低減するために,チョッパーを用いてポンプ光の繰り返

し周波数を 500 Hz に落とし、ポンプ光の照射 ON/OFF の赤外光強度の比から吸光度変化を計 算した.また、時間分解測定は、光学遅延回 路を用い、ポンプ光とプローブ光が照射され る時間差をずらしながら測定を行った.

(3)光励起電子・正孔の過渡吸収スペクトル

LaTiO₂N 光触媒に 355 nm の紫外光パルスを照 射して測定した可視、近赤外、中赤外域の過 渡吸収スペクトルを Fig. 4A に示す. 図に示 すように,LaTiO₂Nのバンドギャップを励起す ると, 17000 と 6000 cm⁻¹ (580, 1700 nm) に 半値幅が約2000,4000 cm⁻¹あるブロードな過 渡吸収ピークが観測された. 17000 cm⁻¹のピー クは、トラップ正孔による吸収に帰属される. これは, Fig. 5 に示すように, 正孔を消費す るメタノールを導入すると、減衰速度が低下 するからである.この吸収強度は,酸素雰囲 気中でもほとんど変化しなかった.これは, あとで示すように、LaTiO₂N中で生成した光励 起電子は大部分が深いトラップに捕捉され, 電子の反応活性が低下するためである。正孔 による過渡吸収は紫外域から可視域に現れ, TiO₂の場合には 360 nm, 450 nm, 520 nm に観 測され, ・-Fe₉0₃の場合には 580 nm に観測さ れることが報告されている.この正孔による 過渡吸収は, Fig. 1C に示すように価電子帯か らトラップ準位への光学遷移,あるいは,価 電子帯中のバンド内遷移などに帰属されてい る.LaTiO₂Nの場合にもこのような光学遷移が 寄与していると考えられる.

Fig. 4 Time-resolved absorption spectra of LaTiO₂N photocatalyst irradiated by UV laser pulses (355 nm, 6-ns duration, 0.5 mJ cm⁻², 5 Hz). (A) bare LaTiO₂N, (B) 0.5 wt% Pt-loaded LaTiO₂N, and (C) 2 wt% CoO_x-loaded LaTiO₂N.

Fig. 5 Decay of the transient absorption at 17000 cm^{-1} , observed in 20 Torr N₂, O₂, and MeOH vapor.

一方,6000 cm⁻¹の吸収は,Fig. 18 に示すように、トラップ電子に帰属され,トラッ プ準位から伝導帯への光学遷移に帰属される.このピークトップのエネルギーは、トラ ップ準位から伝導帯のエネルギー差に相当し,6000 cm⁻¹は0.7 eV に相当する.そして、 4000 ~ 1000 cm⁻¹の中赤外域におけるスペクトルの形状は,TiO₂や NaTaO₃,SrTiO₃とも 全く異なる.これらの触媒では、自由電子や浅いトラップ電子による右肩上がりの構造 の無い吸収 (Fig. 1A) を 2000 cm⁻¹以下に強く現れる.LaTiO₂N の場合にも 2000 cm⁻¹ 以下の吸収には、これらの自由電子や浅いトラップ電子による寄与が含まれると考えら れる.しかし、6000 cm⁻¹の吸収は 2000 ~ 1000 cm⁻¹の吸収より著しく大きい.この結 果は、大部分の電子は伝導帯の下、約0.7 eV に形成されたトラップに捕捉されること を示唆している.窒素ドープ TiO₂の場合には、伝導帯の下 0.75 eV と 1.15 eV に酸素 欠陥に由来するトラップ準位を形成することが報告されている.LaTiO₂N の場合にも、 このような酸素欠陥が深いトラップ準位の形成に寄与していると考えられる.

(4) 水素発生助触媒 Pt の担持効果

次に, Pt 助触媒を担持した効果を調べた. Pt は水素発生助触媒として最もよく用い られる材料である. Fig. 4B に示すように, Pt を担持しても 17000 と 6000 cm⁻¹に二つ のピークが観測される. しかし, これらの強度比は, Pt を担持することで変化する. Pt を担持することで 17000 cm⁻¹の強度は減少し, 逆に 6000 cm⁻¹の強度が増加している.

このトラップ正孔とトラップ電子の強度比が変化 するということは、LaTiO₂N 光触媒の中における電 子と正孔の数の比が変化することを示している.

Pt を担持することによるトラップ正孔,トラップ 電子,自由電子の減衰過程をより詳しく調べた結果 が Fig. 6 である.図に示すように,2000 cm⁻¹にお ける自由電子と 6000 cm⁻¹におけるトラップ電子の 減衰速度は Pt を担持することで速くなるにも関わ らず,17000 cm⁻¹のトラップ正孔の減衰速度は,Pt を担持することで減衰速度が遅くなった.これらの 結果は,光励起電子が Pt に捕捉された結果引き起 こされたと考えられる.光励起電子が Pt に捕捉さ れると,LaTiO₂N 中に存在する正孔は,電子と再結 合する確率が減少する.そのため,正孔の寿命は長 くなると考えられる.このとき,光励起電子の減衰 は,6000 cm⁻¹のトラップ電子より2000 cm⁻¹の自由 電子の方がより顕著である.この結果は,トラップ 電子より自由電子の方がより Pt へ移動しやすいこ

Fig. 6 Decay of transient absorption of Pt-loaded LaTiO₂N. The transient absorption was measured at 17000, 6800, and 2000 cm⁻¹. The sample was excited by 355-nm laser pulses.

とを示唆している.ここで、Ptの担持量依存性をみると、Ptの担持量を 0.5 wt%から 2 wt%に増加させると、正孔の増加量が減少し、0.5 wt%と逆転する.この正孔の増加量の減少は、正孔が LaTiO₂N から Pt に移動したことを示唆している.我々はこれまでに、Pt を担持した n型 GaN において、一部の Pt 粒子は電子を捕捉するが、一部の Pt 粒子は正孔を捕捉することを見いだしている.Pt 粒子が電子を捕捉するか、あるいは、正 孔を捕捉するかの選択性は、担持された Pt の粒径や構造などの違いに依存すると考えられる.この結果は、Pt の担持量を必要以上に増加させると、本来は起こって欲しくない Pt への正孔移動が起こることを示唆している.一般的に、助触媒の担持量には最適値があり、これを過ぎると定常反応活性が低下するが、このような Pt への正孔移動が定常反応活性を低下させていると考えられる.

(5)酸素発生助触媒 CoO,の担持効果

次に CoO_xの担持効果を調べた. CoO_xは酸素発生を促進する助触媒である. 我々はすで に LaTiO₂N に CoO_xを担持すると, 600 nm 以下の可視光において,約 30%の量子効率で水 を酸化することを報告している. Fig. 4C に CoO_xを担持した LaTiO₂N のバンドギャップ を励起して測定した過渡吸収スペクトルを示す. CoO_xの場合には,17000 と 12500,5000 cm⁻¹に 3 つのピークが現れた. 17000 と 5000 のピークは無担持と Pt 担持の触媒で観測 されているが, CoO_xを担持すると,前者の正孔による吸収強度は減少し,後者のトラッ

プ電子による吸収強度は増加し、これらの相対強度 が大きく変化することが分かる.これらの結果は、 CoO_xを担持すると、LaTiO₂N中の正孔の濃度が減少 し、電子の数が増加することを示している.ここで 注目すべきことは、CoO_xを担持すると、トラップ電 子の吸収ピークが 6000から 5000 cm⁻¹に長波長シフ トすることである.この長波長シフトは、伝導帯か ら電子が存在するトラップ準位までの深さが浅く なることを示唆している.この結果は、表面の欠陥 に由来するトラップ準位の深さは表面処理によっ て変化することを示しており、このような情報は、 より高い活性を有する光触媒の開発に役立つと考 えられる.

光励起キャリアーの減衰過程をより詳細に調べた のが Fig. 7 である. CoO_x の担持量を増加させると, 17000 cm⁻¹の正孔の数は単調に減少する. この正孔 の数の減少は,後で詳しく述べるように, CoO_x に正 孔が捕捉されることを意味している. 一方,5000 cm⁻¹

Fig. 7 Decay of transient absorption of CoO_x loaded LaTiO₂N. The transient absorption was measured at 17000, 6800, and 2000 cm⁻¹. The sample was excited by 355-nm laser pulses.

のトラップ電子の場合、CoO_xの担持量を増やすと、強度が増加し、光励起電子の寿命が 長くなることを示している.2000 cm⁻¹における自由電子の変化は CoO_xを担持すること で強度が10倍以上増加しており、6000 cm⁻¹のトラップ電子より大きく変化することが 分かる.この結果は、トラップ電子より自由電子の方がより大きな変化を示すことを示 している.

以上の結果は、LaTiO₂N に CoO_xを担持すると、LaTiO₂N 中の残存電子数が増加し、正 孔の数が減少することを示している.この正孔の減少は、CoO_xが正孔を捕捉したためで あり、電子数の増加は再結合が抑制されたことを示唆している.つまり、正孔が CoO_x に捕捉されると、電子と正孔はそれぞれ LaTiO₂N と CoO_xに局在化される.その結果、再 結合が抑制され、電子の寿命が長くなる.同様な正孔の捕捉による電子の寿命の増加は、 メタノールなどの正孔捕捉剤を導入することでも観察される.これらの結果は、メタノ ールなどの正孔捕捉剤と同様に CoO_x は非常に効率よく正孔を捕捉することを示してい る.

 CoO_x による正孔の捕捉は、Fig. 4C の過渡吸収スペクトルの形状からも確認すること ができる. CoO_x を担持すると 12500 cm⁻¹に新しい吸収ピークが出現する. この吸収は Co の酸化数の増大によるものである. CoO_x は Co(II)から Co(III)に酸化されると色が 黄色から灰色に変化することが報告されている. したがって、この 12500 cm⁻¹ (800 nm) のピークの出現は、正孔が CoO_x に捕捉され、Co の価数が増加したことを強く示唆して いる. つまり、この酸化した CoO_x が水を酸化する反応中心になっていることが示され た.

(6)フェムト秒時間分解赤外分光測定

次に、Pt による電子の捕捉と CoO_xによる正孔の捕捉の初期過程をフェムト秒時間分 解赤外分光法を用いて調べた.これまでの実験より、2000 cm⁻¹の自由電子による吸収 がより大きな変化を与えることが分かったので、ここでは、2000 cm⁻¹における強度変 化を調べた.Fig. 8 に結果を示すが、LaTiO₂N に Pt を 0.5、2 wt%担持しても 0 ~ 1000 ps における電子の減衰曲線は、無担持の曲線とほぼ重なり合っており、区別できない. この結果は、Pt への電子移動は 1000 ps より遅い時間領域で起こっていることを示し ている.TiO₂の場合には、担持した Pt への電子移動は 10 ps 以内に起こっていること が報告されている.これらの結果は、Pt への電子移動速度は担持する触媒の性質に依 存することを示している.LaTiO₂N の場合には TiO₂ より電子移動が遅いが、これは LaTiO₂N は Pt を担持しても水素発生に高い活性を示さない.これは、LaTiO₂N の中に生 成した電子は 6000 cm⁻¹に吸収を与えるトラップサイトに捕捉されるため、電子の反応 活性が低下し、そのため Pt への電子移動速度が低下したためであると考えられる.

一方, CoO_xを担持すると,電子の減衰速度が低下する.時間0 fs における 2000 cm⁻¹

の吸収強度は無担持の物とほぼ同じであ るが, CoO_xを担持させると数ピコ秒以内に 電子の減衰速度が遅くなり, これらの曲線 の解離は時間が経過するにつれて大きく なり,電子の寿命が長くなってくる. これ らの結果は, CoO_xへの正孔移動は数ピコ秒 以内に起こっていることを示している. す なわち, このような非常に速い正孔の捕捉 が水の酸化反応の活性向上に役立ってい ることが分かった.

Fig. 8 Decay of transient absorption at 2000 cm⁻¹ on bare, CoO_x , and Pt loaded LaTiO₂N photocatalysts in air. The sample was excited by 500-nm laser pulses.

(7)おわりに

本研究では、時間分解可視・近赤外・赤外分光法を用いると、光触媒における光励起 キャリアーのエネルギー状態と動きを調べることができることを示した. LaTiO₂N のバ ンドギャップを励起すると、17000 と 6000 cm⁻¹にそれぞれトラップ正孔とトラップ電 子に帰属されるブロードな吸収ピークが観測され、自由電子と浅くトラップされた電子 が 2000 cm⁻¹以下に与える吸収と区別できることを示した. そして、これらの吸収スペ クトルを測定することで Pt や CoO_x などの助触媒への電子移動や正孔移動、また、光励 起電子のエネルギー状態や再結合速度への影響などを調べることができる. LaTiO₂N に Pt を担持すると、Pt が電子を捕捉し正孔の寿命が長くなることを見いだした. また CoO_x を担持すると、正孔の寿命が短くなり電子の寿命が著しく長くなることを見いだした. さらに、CoO_x への正孔移動は数ピコ秒以内に起こっており、Pt への電子移動はナノ秒 以降に起こっていることを見いだした. すなわち、時間分解分光法を用いることで助触 媒による光励起キャリアーの分離過程を明らかにすることができた.