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Abstract

We propose a multiview method for reconstructing a folded cloth surface on which regularly-textured color patches are printed.
These patches provide not only easy pixel-correspondence between multiviews but also the following two new functions. 1) Error
recovery: errors in 3D surface reconstruction (e.g. errors in occlusion boundaries and shaded regions) can be recovered based
on the spatio-temporal consistency of the patches. 2) Single-view hole filling: patches that are visible only from a single view
can be extrapolated from the reconstructed ones based on the regularity of the patches. Using these functions for improving 3D
reconstruction also produces the patch configuration on the reconstructed surface, showing how the cloth is deformed from its
reference shape. Experimental results demonstrate the above improvements and the accurate patch configurations produced by our
method.
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1. Introduction

Modeling the motion of non-rigid clothing is one of im-
portant topics in Computer Vision and Graphics: for surface
reconstruction[1], body estimation under clothing[2, 3], and
physical cloth simulation[4, 5]. Several studies have proposed
ways to obtain the cloth model/parameters from the surface
points of a cloth (see [6, 7], for example). Sample data of the
cloth motion are required also for data-driven approaches with-
out the physical cloth model (e.g. free cloth motion[8] and cloth
motion driven by human motion[9]). Therefore, cloth surface
reconstruction is a fundamental technology for all of the above
applications.

We developed a 3D reconstruction method with the following
properties that are crucial for cloth modeling:

Correctness Reconstruction error should be small.

High spatial density Spatially dense points are necessary be-
cause a cloth is completely non-rigid and its shape changes
significantly even within a small area.

High temporal density Quick motion should be captured with
a high frame-rate.

Completeness The surface of a cloth should be reconstructed
as completely as possible to capture the whole motion of a
cloth.

Configuration To capture the instantaneous motion of a cloth
as well as its temporal deformation, each point on the re-
constructed surface must correspond to its respective point
on the reference surface (i.e. flat cloth with no tension).

We call this correspondence a configuration. The config-
uration includes the orientation of each patch as well as
its location. The configuration also enables time-coherent
texture mapping (i.e. mapping any texture onto a deform-
ing 3D surface).

These properties are classified into shape reconstruction (top
four) and configuration acquisition. In our reference configu-
ration consistent reconstruction, the inseparable relationships
between them are used to improve their accuracy and robust-
ness.

2. Related Work

General 3D reconstruction algorithms can be used for
cloth surface reconstruction (e.g. dense and accurate
reconstruction[21], one for a textureless object[23]). Recently,
bundle adjustment[25, 26] and Graph-cut[15, 27] have been
widely used for optimal solutions. These algorithms can ob-
tain 3D points from multiview images, although some incorrect
points are included and the complete shape cannot be captured
due to occlusion and image processing errors such as multiview
point correspondence. High spatio-temporal density can be ac-
quired up to the spatio-temporal resolution of the cameras by
frame-independent image-based reconstruction.

With frame-independent reconstruction, however, the config-
uration cannot be acquired because no correspondence between
reconstructed shapes over time is obtained. Although surface
point tracking[28, 29] provides us with temporal point corre-
spondence, point correspondence over occlusion is difficult to
obtain. Furthermore, to obtain the physical properties of the
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cloth (e.g. tension and spring parameters) and to achieve tex-
ture mapping from pictures on an image plane, motions of reg-
ularly distributed points and their deformation from the refer-
ence shape (i.e. flat cloth), namely the configuration, should be
obtained.

The shape model (i.e. template mesh) of a garment pro-
vides several advantages, such as robust surface reconstruction
and patch correspondences between the template and the recon-
structed surface, by shape fitting. For example, shape match-
ing with easily-identifiable parts of the garment (e.g. collars
and cuffs) allows us to obtain temporally-coherent patch cor-
respondences in the sequence of temporal meshes[24]. How-
ever, shape matching is inappropriate for several applica-
tions/scenarios; for example, 1) shape matching is not robust
if easily-identifiable parts are occluded and/or no such parts ex-
ist in a target cloth and 2) the deformation from the reference
flat shape cannot be obtained directly.

A coded pattern of color patches densely printed on the
cloth improves the correctness and spatial density of multiview
stereo. While most previous works using such a pattern con-
centrated only on these improvements (e.g. unique pattern gen-
eration for robust matching[31]), the pattern is also useful for
obtaining the configuration as achieved by the White-Crane-
Forsyth method[10]. In [10], the configuration is obtained by
making patch correspondences between the coded pattern and
the observed images based on a local combination of color
patches.

For higher correctness and spatial density, active reconstruc-
tion using a programmable light source(s) (e.g. video projector)
is effective: space-time matching[32], shape from defocus[33],
and photometric stereo[34]. High temporal density can be guar-
anteed up to that of the camera by using high-frequency DLP
projection[35]. However, each of these methods has several
disadvantages. For example, temporal density is decreased be-
cause multiple images are required for each static shape[33] and
the material of a target is limited[34]). Furthermore, an essen-
tial problem in these methods is the difficulty in extracting the
color patches on the cloth due to projector lights, and therefore
these methods cannot obtain the patch configuration.

Hole filling of the reconstructed shape is also important for
obtaining the complete shape of the cloth because its complex
folds produce large occlusions. While it is difficult to fill them
even with a sophisticated filling method[36], prior knowledge
of the target cloth allows us to obtain good results (e.g. us-
ing sample surfaces reconstructed in other frames[10, 24]). For
example, in [10], completely-reconstructed (hole-free) surfaces
observed at different moments are used as sample data for syn-
thesizing hole filling results by surface deformation[11]. On the
other hand, our method employs the patch configuration also for
hole filling, which requires no sample surface data.

3. 3D Cloth Surface Reconstruction using Color Patches

3.1. White-Crane-Forsyth Method

Many methods have been proposed for reconstructing a 3D
surface and its motion. Among them, a method proposed by
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Figure 1: Five steps of the White-Crane-Forsyth method[10].
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Figure 2: A combination of neighboring patches used for neighboring match-
ing: a shaded patch depicts a patch of interest.

White, Crane, and Forsyth[10] is the state-of-the-art multi-
view method using color patches printed on a cloth for relia-
bility and precision. In their method, motion of the cloth with
regularly-textured patches is observed from multiviews. While
the method requires the printed patches, it is useful to acquire
accurate cloth surfaces and parameters (e.g. tension, spring) for
Vision and Graphics applications as mentioned in Introduction.

The method consists of the five steps below, whose flow is
shown in Fig. 1:

Color processing: Sample values of each color are manually
extracted from real images in advance. With the samples, each
pixel color is determined based on its nearest neighbor in each
observed image. Each patch is then segmented to find its neigh-
bors (three neighbors for a triangle patch).

Neighborhood matching with local optimization: Patch cor-
respondences over multiple views are established via those be-
tween each view and the cloth. A set of neighboring patches
segmented in each image is compared with that on the cloth for
matching. A patch of interest and its three neighbors are com-
pared. (“1st iteration” in Fig. 2). Then the neighbors are de-
creased until 0. (“4th iteration” in Fig. 2). This matching works
from flat regions, where many neighbors are observed in the im-
age, to folded regions, where the combination of neighbors in
the image does not match with that on the cloth. Patch corre-
spondences between each image and the cloth gives us those
between the multiview images.

More specifically, the correspondence between i-th image
patch and m-th patch on the cloth is determined by locally
optimizing a product over color similarities ci,m of neighbors:
ci,m
∏

l∈Nm
maxk∈ni ck,l,where ni and Nm denote the image neigh-

bors of i-th patch and the neighbors of m-th patch on the cloth.

3D reconstruction: The surface of the patches is reconstructed
using triangulation of corresponding patches given by neigh-
borhood matching.

Pruning with strain: Physically unrealistic strain should be
avoided. Strain is computed from the distance between recon-
structed 3D points; the original distance on the cloth is known.
If any patches are pruned by this strain constraint, the process
goes back to neighborhood matching with local optimization to
remake correspondences of these patches again.
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Figure 3: Input images. (Left) View1 and (Right) View2.
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(iii) (ii)

(a) Patch configuration images

(i)

(iii) (ii)

(b) Patches with
corresponding error

Figure 4: Results obtained by cloth reconstruction[10]. The zoom-in images of
regions enclosed by broken lines are shown in Fig. 6.
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(a) Left-frontal view (b) Top view

Figure 5: 3D surface reconstructed by the White-Crane-Forsyth method[10] us-
ing images captured at one frame; while the White-Crane-Forsyth method[10]
can fill holes (false-negatives) by using the training data of the 3D surface as
described in Sec. 2, this result was obtained by the images captured only at one
frame. Red and blue circles show false-positives and false-negatives, respec-
tively.

Hole filling: For filling a hole of patches in a frame of inter-
est, occlusion-free surfaces of these patches in other frames
are used. Surface deformation[11] interpolates the hole with
the sample occlusion-free surfaces. Furthermore, temporal
smoothing based on anisotropic diffusion[37] deforms time-
varying surfaces while preserving fast non-rigid motion; con-
ventional temporal smoothing is not appropriate because fast
non-rigid motion might be blurred.

3.2. Results by the White-Crane-Forsyth method and Their
Problems

We performed 3D cloth surface reconstruction using this
method. A cloth with triangle patches, whose colors were red,
green, blue, yellow, and magenta, was captured by cameras
from two view points. Ther captured images are shown in Fig.
3, whose camera parameters were calibrated by the Zhang’s
method[12].

In each of the obtained patch configuration images shown in
Fig 4 (a), gradually changing colors were given to the neigh-
bors on the cloth. Neighbors with discontinuous colors indicate
either occlusion boundaries or incorrect patch correspondences
between the image and the cloth. Patches having incorrect cor-
respondences (shown in Fig. 4 (b)) were extracted from Fig
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Figure 6: Detailed analysis of typical errors, which were extracted from (i), (ii),
and (iii) in Fig. 4 (a). Each dotted line depicts an occlusion boundary.

Figure 7: SIFT matching results. For visualization, a small number of the ex-
tracted points are shown. The success rate of matching was 9/17.

4 (a). Most incorrect correspondences occurred at occlusion
boundaries. These errors should be corrected for 3D recon-
struction, while these results of neighborhood patch matching
are better than those obtained by popular point matching; for
comparison, the results of SIFT-based point matching[30] are
shown in Fig. 72. Indeed, these corresponding errors caused
3D reconstruction errors (i.e. large holes and extraneous ele-
ments) as shown in Fig. 5.

4. Detailed Analysis of the Problems and Their Solutions

This section describes an analysis of what caused the prob-
lems with the White-Crane-Forsyth method[10], which gives us
insights into solutions for resolving the problems. The detailed
implementation of the solutions is described in the next section,
Sec. 5.

4.1. Implicit vs Explicit Occlusion and Ambiguity Handling

Stepwise patch matching of the White-Crane-Forsyth
method, shown in Fig. 2, allows us to separate flat regions with
occlusion boundaries in heavily folded regions. Our method
also employs this stepwise matching for obtaining initial patch
correspondences. While this matching achieves implicit occlu-
sion handling, overflows might occur as shown in (i) of Figs. 4
and 6 because the occlusions are not detected explicitly.

Indeed, complete detection of occlusion boundaries is diffi-
cult. In the examples shown in Fig. 8, patches with the same
color were overlapped and regarded as one patch (circle “1”
in the figure) and tiny patches were difficult to segment based

2In addition to SIFT matching, pixelwise color matching was also imple-
mented. The results were not correct because SIFT features and other gradient-
based features of the regularly-textured patches are very similar to each other.
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Figure 8: Patch segmentation errors in occlusion boundaries. Randomly se-
lected colors were given to different patches in a right-hand image. 1) Patches
with the same color are regard as one patch and 2) small patches are not ex-
tracted.

only on the color cue (circle “2”). These facts give us an insight
into explicit occlusion handling; if a segmented patch is not
represented clearly as a triangle, the region might be along an
occlusion boundary. Removing such patches decouples three-
dimensionally discontinuous surfaces in the image and allows
us to impose a proper smoothness constraint on each surface.

As well as in occlusion boundaries, ambiguous textures (e.g.
specular and shaded surfaces) violate multiview correspon-
dences as shown in (ii) of Figs. 4 and 6. For example, the am-
biguous textures might produce extraneous surfaces near real
surfaces as shown in Fig. 4 (d). These reconstruction errors are
difficult to remove based only on 3D proximity. We cope with
this problem in a similar way to occlusion handling described
above. Our method first makes correspondences between mul-
tiviews and the cloth without the ambiguous patches. Then the
correspondences of the remaining ambiguous patches are con-
structed to fit the reconstructed patches.

4.2. Optimization with Local vs Global Matching
Neighborhood matching in this method[10] imposes a

smoothness constraint only around a patch of interest. This lo-
cal optimization might cause non-smooth correspondences (e.g.
(iii) of Figs. 4 and 6)

Our method makes smooth correspondences by global opti-
mization of multiview spatio-temporal cues. Assume that the
i-th image patch (denoted by ṗi) corresponds to the m-th patch
on the cloth (denoted by pm). The patch configuration is opti-
mized so that it satisfies the following consistencies:

C1. Uniqueness Each patch on the cloth matches at most one
patch in each image. This consistency is identical to an oc-
clusion term, which is used to avoid 1-to-many pixelwise
correspondences between multiviews, proposed in [13].

C2. Color consistency ṗi and pm have the same color.

C3. Spatial consistency Neighbors of ṗi correspond to neigh-
bors of pm.

C4. Multiview consistency ṗi and its multiview correspon-
dence in another view must have the same color. The mul-
tiview correspondence is given in the 3D reconstruction
process.

C5. Temporal consistency Let ṗ′i denote the same point with
ṗi at the next capturing frame, which is obtained by a fea-
ture tracker[14]. ṗ′i must correspond to pm.

An energy function that consists of all of the above consis-
tencies is globally optimized by Graph-cut[15]. Though Graph-
cut is widely used in multiview reconstruction where “pixelwise
disparity” is optimized, “patch correspondences” between mul-
tiviews are optimized in our formulation. In both of the for-
mulations, a smoothness term plays an important role; neigh-
boring pixels should have the same disparity in multiview re-
construction and neighboring patches should be neighbors also
in the other view in our formulation. In multiview reconstruc-
tion, however, the disparity gradually changes pixel by pixel in
a curved surface. This causes difficulty in discrete optimization
via Graph-cut. On the other hand, the optimization via Graph-
cut fits into multiview patch correspondences, except patches
around occlusion boundaries, which are removed in occlusion
and ambiguity handling described above.

In our formulation, Graph-cut determines which patch on
the cloth corresponds to which patch in each image. Al-
though the original max flow algorithm used in Graph-cut
can optimize only a binary energy function, α-expansion[16]
achieves multi-label (i.e. patche IDs on the cloth in our for-
mulation) optimization. It is also known that the max flow
can obtain the global optimal solution only if the energy func-
tion satisfies submodularity[17]. For a non-submodular energy
in our formulation, Quadratic Pseudo-Boolean Optimization
(QPBO[18, 19]) provides a partially global optimal solution3.

4.3. Cloth Strain Constraint vs Patch Configuration
In this method[10], a constraint with cloth strain prunes unre-

alistic patch correspondences in terms of a 3D distance between
patches. This constraint cannot prune an extraneous surface if
it is close to correct patches. Figure 5 (b) shows such errors.

Our global optimization also cannot make a correct corre-
spondence in a patch with error in the preprocesses, namely
color processing and 3D reconstruction. These two kinds of
errors cause inconsistency in color consistency, C2, and multi-
view consistency, C4.

If other kinds of consistency are not satisfied in an image
patch, ṗi, it is not easy to find a consistent patch ID because it is
difficult to find which error(s) (e.g. patch segmentation, image-
to-cloth patch correspondence, and 3D reconstruction) actually
occurred in ṗi. For example, if ṗi and another patch in the same
image, ṗ j, have a correspondence with pm (i.e. C1 is not satis-
fied) and both of ṗi and ṗ j satisfy all of other consistencies, we
cannot determine which one has an error. What is worse is that
making the new correspondence in ṗi or ṗi violates the results
of global optimization; the change in the correspondence af-
fects the correspondences in neighboring patches for satisfying
spatial consistency, C3.

On the other hand, the error in the color/surface of ṗi can be
locally recovered if only C2/C4 is not satisfied in ṗi. This is
because the change in the color/surface is not influential on the
optimized correspondences in other patches.

3The max flow algorithm and QPBO were implemented in accor-
dance with [20] and [19], respectively. Their source codes can
be downloaded from the web site of the authors of these papers:
http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html
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4.4. Shapes in Other Frames vs in a Frame of Interest
The White-Crane-Forsyth method[10] employs sample sur-

faces and known patch correspondences between them in order
to fill large holes in a reconstructed surface. While the hole
filling method with sample surfaces[11] provides a reasonably
interpolated surface, the sample surfaces must be reconstructed
with no holes in other frames. This limitation rules out recon-
struction from still images. An essential drawback of this hole
filling is that patches corresponding to the hole, which are ac-
tually observed from one of the views in a frame of interest,
are not used for hole filling. Our method improves accuracy
of 3D reconstruction by integrating the surface reconstructed
by multiviews and the single-view patches via the equidistant
constraints between known correspondences on the cloth.

5. Our Cloth Reconstruction Method

5.1. Detailed Implementation
From the discussion in Sec. 4, our reconstruction method is

designed as shown in Figs. 9 and 10. Compared with the White-
Crane-Forsyth method, occlusion and ambiguity handling is
added and neighborhood matching, pruning, and hole filling are
augmented.

Color processing: Initial patches in each observed image are
segmented in a similar way to the color processing in [10].
The results of pixelwise color detection are shown as “Detected
color pixels” in the top-left box of Fig. 10.

Occlusion and ambiguity handling: As described in Sec. 4.1,
evaluation of triangularity removes segmented image patches
that are not similar to a triangle before initial reconstruction
and neighborhood matching. “Segmented patches” in the top-
left box of Fig. 10 shows the remaining segmented patches.

Specifically, for handling occlusion and ambiguity, the fol-
lowing two kinds of image patches are removed in our method:

Small patches If the number of pixels composing a patch is
less than a threshold, this patch is removed.

Ambiguous neighbors In each segmented patch, pixels that
are next to any other patches are counted. Three of them,
each of which has one of the top three counts, are regarded
as neighbors of this patch.

If a patch satisfies one or more of the following criteria,
this patch is removed: 1) The number of pixels that are
next to any of the neighbors is less than a threshold. 2)
None of the neighbors includes this patch in its neighbors.

These simple criteria might over-remove patches. Our strategy
is that these unreliable patches are initially neglected. Their
correspondences are estimated 1) in other views where they
are clearly observed or 2) by following the correspondences of
other reliable patches.

3D reconstruction: Unlike the White-Crane-Forsyth method,
the Epipolar constraint is used for an initial 3D surface (“Re-
constructed 3D surface” in Fig. 10) at each frame. In our ex-
periments, a stereo based method[21] reconstructed a dense 3D

point cloud. Note that the point cloud is reconstructed sim-
ply by stereo reconstruction based on Epipolar geometry with
no advantage of the known patch configuration on the cloth.
The 3D surface patches of the point cloud are then computed
by mesh reconstruction[22]. This surface reconstruction may
generate artificial surface patches by connecting discontinuous
points. By removing the surface patches that are far away from
any of the reconstructed points, the initial reconstructed surface
is obtained. Note also that multiview correspondences are not
established in image patches removed by occlusion and ambi-
guity handling.

Neighborhood matching with global optimization: Initial
patch correspondences among multiviews and the cloth (“Im-
ages with patch configuration” in Fig. 10) are established in
the same way as the White-Crane-Forsyth method[10]. The op-
timization with Graph-cut is then achieved, whose details are
described below:

Each patch on the cloth, pm, has the following attributes: an
ID m, a color cue PC(m), and the IDs of neighboring patches
PN

l (m) aligned clockwise, where l ∈ {1, 2, 3} denotes a neighbor.
The same attributes are given also to each image patch in v-
th view, ṗi,v: an image-patch ID i, a color cue ṖC(i, v), and
the image-patch IDs of neighbors ṖN

k (i, v), where k ∈ {1, 2, 3}.
In addition, ṗi,v has the ID of its corresponding cloth patch,
ṖM(i, v).

For satisfying five consistencies C1−C5 mentioned in Sec.
4.2, an energy function E is minimized by Graph-cut:

E =
∑NV

v
∑NI

v
i (E1(i, v)+E2(i, v)+E3(i, v)+E4(i, v)+E5(i, v))(1)

E1(i, v) = C1∑
i′∈ĪPS (ṖM(i, v), ṖM(i′, v)) (2)

E2(i, v) = C2PD(ṖC(i, v), PC(ṖM(i, v))) (3)

E3(i, v) = C3∑3
k min

l∈{1,2,3}

(
PD(ṖM(ṖN

k (i, v)), PN
l (ṖM(i, v)))

)
(4)

E4(i, v) = C4∑
o∈OPD(ṖM(i, v), ṖM(io, o)) (5)

E5(i, v) = C5∑
t′∈TPD(ṖM(i, v), ṖM(it′ , v)) (6)

• C1,C2,C3,C4, and C5 are weight constants.

• NV and NI
v denote the number of views and image patches

in v-th view, respectively.

• PS (i, j) and PD(i, j) are the penalty functions that return 1
if i = j and i � j, respectively. Otherwise 0.

• Ī includes all patches except ṗi,v in v-th view.

• O denotes a set of different views, each of which has a
patch correspondence with ṗi,v. io is the ID of an image
patch in o-th view that matches ṗi,v.

• T denotes a set of temporal variables, t′ ∈ T. An im-
age captured at t′ is used for evaluating C5 (temporal
consistency). In our experiments, an image captured at
t is compared with images captured at t − 1 and t + 1:
t′ ∈ T = {t − 1, t + 1}. it′ is the ID of an image patch cap-
tured at t′ that temporally matches ṗi,v.
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Segmented patches

Reconstructed 3D surface

Observed images

Detected color pixels

Images with patch configuration

M-step : Graph-cuts for patch 
correspondence

E-step : Error removal & re-reconstruction

Pruning

Initial 3D surface reconstruction and patch segmentation Single-view hole filling

Camera center

Color patches on the cloth

Optimized 3D surface with 

patch configuration

Neighborhood matching

Unreconstructed 

patches
Projection

Configuration consistent surface reconstruction

Error
patches
Error
patches

3D surface

with a hole

Occlusion and
Ambiguity handling

Color processing

3
Dre

c
o
n
s
tru
c
tio
n

Possible
patches

3D view line

Hole filling
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Remove

Projection

Image1 Image2

3D surface

Correspondence

C4-inconsistent
patches

C4-inconsistent
patches

Figure 11: Pruning of patches with inconsistency in C4.
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Figure 12: Error recovery with the patch configuration. Blue patches depict
possible correspondences. The epipolar line of ṗi,v is depicted in image2. In
image2 of (b), all patches with no correspondence are illustrated.

Pruning with configuration: Incorrect color and surface of
ṗi,v, which has inconsistency in C2 and C4 respectively, can be
found from the results of global patch optimization.

If only C2 is not satisfied, the second nearest neighbor color
is selected in color processing.

If only C4 is not satisfied, the reconstructed surface of ṗi is
removed as illustrated in Fig. 11. After this pruning scheme,
our method goes back to 3D reconstruction for recovering the
surface of ṗi,v. The 3D error of ṗi,v is recovered by one of the

following two ways depending on whether or not any of the
neighbors of ṗi,v (denoted by ṖN

k (i, v)) is reconstructed with no
error:

(a) Neighbors of correspondences If one or more of ṖN
k (i, v)

are reconstructed with no error, ṗi,v might correspond to
the neighbors of the corresponding patches of ṖN

k (i, v).
Then, ṗi,v is compared only with these neighbors in other
cameras (depicted by blue patches in image2 of Fig. 12
(a)) along the Epipolar line.

(b) With no nearby correspondence Otherwise, ṗi,v remakes
a correspondence so that it must not correspond to i)
patches that incorrectly correspond to ṗi,v in past match-
ing processes and ii) patches with other correct correspon-
dences. Possible patch correspondences of ṗi,v, are de-
picted by blue patches in image2 of Fig. 12 (b).

3D reconstruction of these patches are performed by [21] as in
the initialization process, except that patch matching is evalu-
ated only in the above possible patch correspondences.

Iteration of 3D reconstruction, neighborhood matching, and
pruning is continued until no recoverable surface error is de-
tected by way of the hard-EM algorithm. The hard-EM algo-
rithm consists of error recovery with pruning and 3D recon-
struction (E-step) and neighborhood matching (M-step) as fol-
lows.

1. Estimate initial parameters, θ (i.e. cloth patch IDs of
all image patches) in the same way as the White-Crane-
Forsyth method[10]..

2. (E-step): Compute the best latent variables, Z (i.e. 3D
points of the cloth surface), given θ. Note that patches
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Figure 13: Results of our cloth reconstruction with configuration.

(a) Left-frontal view (b) Top view

Figure 14: 3D surface reconstructed by our method (two views).

(i) (ii) (iii)

Figure 15: Detailed analysis of errors; compare them with Fig. 6, which show
the errors in the same regions in Fig. 6.

with inconsistency only in C2 or C4 are used for 3D re-
construction after the first iteration.

3. (M-step): Update θ with the computed Z using Graph-cut.
4. Iterate E- and M-steps until no recoverable surface error is

detected.

After the iteration is halted, patches in which one or more of
the consistencies are not satisfied are removed from the recon-
structed surface.

Hole filling: The surface corresponding to a patch that is ob-
served only in a single view is estimated taking into account
its view line and the smooth and equidistant relations with the
neighboring reconstructed patches. The single-view patches are
reconstructed from the fringe of the hole so that 1) the 3D po-
sition of the patch is located along its 3D view line, which is
from the camera center to the patch on the image plane, and 2)
the 3D distance from the hole patch to its neighboring recon-
structed patch is approximately equal to that between two re-
constructed patches. The detailed implementation of this hole
filling is described below:

The mean of the 3D distances between all pairs of recon-
structed neighboring patches (between their centers) is com-
puted (denoted by d̄). Given ṗc

i that is observed only from c-th
camera, let L(i, v) denote the view line from the optical center
of c-th camera to ṗc

i on its 3D image plane. The 3D point of

ṗc
i is estimated so that it is on L and is d̄ distant from its recon-

structed neighbor (denoted by ṗN
k (i, v)):

• If d̄ = dpl, where dpl is a distance from L to the 3D point
of ṗN

k (i, v), the new 3D point corresponding to ṗc
i is recon-

structed in the foot perpendicular to L.

• If d̄ < dpl, the new point is put in the foot perpendicular to
L.

• If d̄ > dpl, two points on L are d̄ distant from the 3D point
of ṗN

k (i, v). In this case, the 3D point of ṗc
i is interpolated

by cubic spline interpolation. Then the one that is closer
to the interpolated point is selected.

All the new 3D points are optimized so that the sum of (d̄−dpl)2

is minimized. 3D surface reconstruction[22] is then performed
and the surface patches that are far away from any of the re-
constructed points are removed, as in the initialization process.
Finally, the optimized 3D surface and its patch configuration
are reconstructed.

5.2. Improvements in Our Method

Experiments were conducted using our method with the
same images used in Sec. 3.2. The following parameters
were given to Graph-cut in all experiments in this paper:
C1,C2,C3,C4,C5 = 3, 1, 1, 1, 1. The temporal constraint C5
was not employed in the experiment with a pair of still images
in this section.

Fig. 13 (a) and (b) shows the improved accuracy in patch
configuration images and their error maps, respectively. The
zoom-in images in Fig. 15 shows almost no overflow across the
occlusion boundary. Fig. 14 shows the improvements in a re-
constructed 3D surface; no big holes and no big false-positives.
Compare our results with those produced by the White-Crane-
Forsyth method[10], which are shown in Figs. 4, 5, and 6.

Figure 16 shows multiview compensation of the patch con-
figuration around occlusion boundaries. While several patches
(i.e. patches “3” and “7” in Fig. 16) could not be detected in
view1 (i.e. (a) and (b) in Fig. 16), all patches were detected cor-
rectly in view2 (i.e. (c) and (d) in Fig. 16). These patches were
then correctly and consistently located on the 3D cloth surface
reconstructed by our single-view hole filling as shown in (f).
For comparison, the 3D surface only with the patch configura-
tion image of view1 is shown in (e), where the 3D surface was
not colored by the IDs of the map patches. For visually veri-
fying the correctness of the 3D surface and the obtained patch
configuration, the color pixels extracted from view1 and view2
were reprojected onto the 3D surface; patches visible from
view1 was textured by the color image of view1 and then the
remaining patches were textured by the color image of view2.
The result is shown in (g). It can be seen that the 3D surface was
textured smoothly. This proves that the reconstructed surface is
consistent with the obtained patch configuration.

As shown above, many of the improvements in our method
are observed around occlusion boundaries. Across the occlu-
sion boundaries, 3D surface patches reconstructed by stereo
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(f) Surface with the patch config
images of view1 and view2

(g) Surface with the color patches extracted 

from the images of view1 and view2

Figure 16: Multiview compensation. (a) and (c) were extracted from (iv) in Fig.
13 (a), both of which show almost the same surface. (e) and (f) shows the 3D
surfaces with the patch configuration reprojected from “view1” and “view1 and
view2”, respectively. (g) shows the 3D surface with the color images extracted
from view1 and view2. Gray patches indicate the ones that were not observed
from view1. A patch with the same digit indicates the correspondence.

should have a border with the patches reconstructed by single-
view hole filling or the boundary line of the reconstructed sur-
face. Hence, for further evaluation of improvements in our
method, the images of the patch configuration with the bound-
ary line were projected onto the reconstructed cloth surface.
Figures 17 and 18 show the projection results of the White-
Crane-Forsyth method and our method, respectively. In each
figure, an input image, its patch configuration image, and 3D
patches with the patch configuration are shown. First of all, oc-
clusion boundary lines, B1 and B2, in the input image were
manually drawn with black lines on the image of the patch
configuration. Then the image of the patch configuration with
the boundary lines was projected onto the 3D patches. While
two patch configuration images (i.e. view1 and view2) were
obtained in the experiments, only view1 was projected. 3D
patches that were occluded from view1 were indicated by gray
patches.

Comparison between Figs. 17 and 18 reveals the following:

• In view ii, 3D patches neighboring the boundary line, B2,
(i.e. the right-hand side of B2) were not reconstructed
by the White-Crane-Forsyth method because these patches
were not reconstructed by stereo. Our method, on the
other hand, reconstructed these patches, indicated by gray
patches, by single-view hole filling.

• In view ii, it can be also seen that our method reconstructed
3D patches across B2 with high accuracy; B2 indicated
by a black line is located just between patches colored
by patch IDs (i.e. patches visible from view1) and gray
patches (i.e. patches occluded from view1).

• While our method could reconstruct the patches around
B2, those around B1, shown in view i, were not so accu-
rate. This fact can be seen because patches occluded from

Patch configuration image
3D patches with projected 

patch configuration

View i View ii

Patch configuration

Input image (view1)

Boundary lines

B1

B2

B1

B2 B2
B1

3D projection

Figure 17: Reconstructed surface across occlusion boundaries: White-Crane-
Forsyth method[10]. Gray patches indicate the ones that were not observed
from view1.

Patch configuration image

3D projection

3D patches with projected 
patch configuration

View i View ii

Patch configuration

Input image (view1)

Boundary lines

B1

B2

B1

B2
B2

B1

Figure 18: Reconstructed surface across occlusion boundaries: Our method.

Table 1: Computational time [sec] of each step in the proposed method. “3D
reconstruction” and “neighborhood matching” are divided into “(point cloud
reconstruction) + (surface reconstruction)” and “(initialization) + (graph-cut)”,
respectively.

Color
process-
ing

Occlusion
and ambiguity
handling

3D
recon-
struc-
tion

Neighbor
matching by
Graph-cut

Patch
prun-
ing

Hole
fill-
ing

2 8 15 + 1 14 + 4 2 3

view1 in the real shape were wider than those in the re-
constructed result, which are indicated by gray patches in
the figure; that is, the wrinkle in the real shape was deeper
than the one in the reconstructed surface. This error might
be caused because patches reconstructed by stereo were
close to each other across the occluded patches so that the
reconstructed patches were connected by simple interpola-
tion by surface reconstruction[22] rather than single-view
hole filling.

Finally, the computational time of each step was evaluated.
As is well known, 3D reconstruction and Graph-cut have huge
computational demands. Table 1 shows the computational time
of each step in our method when it was applied to a stereo
pair of 1024 × 960 pixels images shown in Fig. 3. It can be
seen that the dominant time is spent by point cloud reconstruc-
tion and initialization of a patch configuration. Optimization of
the patch configuration by Graph-cut needed a relatively small
amount of time because optimization mainly affected patches
only around occlusion boundaries.
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View1 View2 View1 View2 Observed images Patch config images Surfaces Textured surfaces

Figure 19: Results of our 3D cloth surface reconstruction with patch configuration: a swinging cloth. Each row shows images and results at the same moment.
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Figure 20: Different views of the reconstructed 3D surfaces with texture map-
ping.

(a) Texture from observed im-
ages

(b) Texture from the new tex-
ture

Figure 21: Zoom-in images of the textured surfaces.

6. Reconstruction from Sequences of a Moving Cloth

A moving cloth, which was used in the experiments de-
scribed before, was captured in image sequences by a pair of
synchronized cameras.

Figure 19 shows the results obtained from the two-view im-
age sequences. Images in the sixth and seventh columns in
Fig. 19 were generated by projecting texture images, (a) the
detected colors in observed images and (b) a new texture, onto
the reconstructed 3D surface. The textures were mapped from
the triangles from the 2D texture image to those on the 3D sur-
face by the Affine transform. Remember that our method re-
moves surface patches that are far away from any of the re-
constructed points. In the experiments, a small threshold for
removing those 3D patches was given for verifying the results
of point reconstruction; those 3D patches were removed while
surface patch reconstruction[22] might fill the small holes of
the reconstructed points.

Figure 20 shows the textured 3D surfaces that are observed
from different views. This figure shows that the complex shape
and patch configuration of the cloth were reconstructed simul-
taneously.

Figure 21 shows the zoom-in images of the reconstructed 3D
surface with texture mapping. While jaggy effects were ob-
served because no color blending was achieved, we can see the
smooth textures on the 3D reconstructed surface.

The same experiments with another cloth, whose pattern was
different from the one used in the experiments described above,
were also performed. A bending arm with a sleeve mede of
the printed cloth was captured. Figure 22 shows the results.
Compared with the cloth surfaces in Fig. 19, a small number
of patches, whose combination is prone to coincide with that
on another area, on small surface areas were captured. It can be
seen that the proposed method could capture the deformation of
the 3D cloth surface. Figure 23 shows the detailed results (i.e.

magnified images). From the results of texture mapping shown
in Fig. 23, the following observations are confirmed:

Texture=Patch config image: The configuration along an oc-
clusion boundary enclosed by a red rectangle could be es-
timated correctly.

Texture=Colors detected from observed images: The tex-
tured surface looks similar to the observed image; if the
reconstructed surface is different from the real shape, the
texture on the surface differs from the observed image.

Texture=New texture: The surface is textured smoothly.

For comparison, the magnified images of the results obtained
by the White-Crane-Forsyth method[10], which can also obtain
the 3D surface and the patch configuration on it, are shown in
Fig. 24. Note again that these results were obtained with no
hole filling using the sample surfaces of the target cloth, which
should be collected in advance. Since the cloth had very few
large wrinkles, the 3D surfaces could be reconstructed with few
errors. However, the patch configuration in Fig. 24 includes
typical errors of the White-Crane-Forsyth method (e.g. incor-
rect patch configuration around occlusion boundaries).

Experimental results in Fig. 25 demonstrate the effectiveness
of our method for occlusion. The occlusion observed in these
experiments was much significant than those in other experi-
ments shown above. The magnified images of the results are
shown in Fig. 26. An obstacle located in front of a target cloth
made it impossible to capture several patches from two views
simultaneously and track them. That makes it difficult to obtain
the 3D surface by stereo and the temporally-consistent patch
configuration by patch tracking. The target cloth was draped on
the arm and was moved like the sleeve of Japanese kimono.

It can be seen that the configuration of the occluded patches
could be obtained. The smoothly textured 3D surfaces (“Tex-
tured surfaces” in Figs. 25 and 26) prove the correctness of the
obtained patch configuration. It can be also seen that the 3D sur-
face of the occluded patches could be obtained by single-view
hole filling. The regions reconstructed by single-view hole fill-
ing were enclosed by red and blue rectangles. Fig. 26 shows
the magnified images of these regions.

For comparison, the results obtained by the White-Crane-
Forsyth method[10] are shown in Fig. 27. In addition to false-
negative surfaces due to occlusion, where the cloth was ob-
served only from one view, typical errors of the White-Crane-
Forsyth method are observed in Fig. 27, whereas our method
could obtain the smooth patch configuration on the 3D surface.

7. Concluding Remarks

We propose a method for reconstructing the 3D surface of
a folded cloth by cameras. Regularly-textured color patches
printed on the cloth surface are employed to 1) provide explicit
occlusion and ambiguity handling in a single view and 2) ac-
quire the patch configuration on the reconstructed surface. The
patch configuration is acquired by Graph-cut so that each patch

10



View1 View2 View1 View2
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Figure 22: Results of our 3D cloth surface reconstruction with patch configuration: sleeve.

Observed image

Texture =

Patch config image
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Texture =
Colors detected from 
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Texture =
New texture

Figure 23: Detailed results of our 3D cloth surface reconstruction with patch configuration: sleeve.
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Patch config image

Textured surfaces

Texture =
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Figure 24: Detailed results of the White-Crane-Forsyth method: sleeve.
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View1 View2 View1 View2

Observed images Patch config images Textured surfacesSurfaces

Obstacles

Figure 25: Results of our 3D cloth surface reconstruction with patch configuration: kimono sleeve. In each row, red and blue rectangles enclose the same regions.
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Figure 26: Detailed results of our 3D cloth surface reconstruction.
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Figure 27: Detailed results of the White-Crane-Forsyth method: kimono sleeve.
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on the reconstructed surface is consistent with its neighbor-
ing patches and its projection patches in all observed images.
With the patch configuration, reconstruction error recovery and
single-view reconstruction can be achieved.

Our method improves the correctness and completeness of
an existing image-based 3D reconstruction algorithm by the
patch configuration, while high spatio-temporal density is guar-
anteed up to the spatio-temporal resolution of the cameras by
the frame-independent image-based reconstruction.

Future work includes reconstruction with many cameras, gar-
ment motion capture, and actual applications such as cloth
parameter estimation and cloth and garment motion database.
For these issues, integration with template-based methods (e.g.
[24]) is also important for robust reconstruction.
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