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Abstract

This paper proposes an iterative scheme between human

action classification and pose estimation in still images. For

initial action classification, we employ global image fea-

tures that represent a scene (e.g. people, background, and

other objects), which can be extracted without any difficult

human-region segmentation such as pose estimation. This

classification gives us the probability estimates of possible

actions in a query image. The probability estimates are

used to evaluate the results of pose estimation using action-

specific models. The estimated pose is then merged with

the global features for action re-classification. This itera-

tive scheme can mutually improve action classification and

pose estimation. Experimental results with a public dataset

demonstrate the effectiveness of global features for initial-

ization, action-specific models for pose estimation, and ac-

tion classification with global and pose features.

1. Introduction

This paper focuses on two kinds of representations for

human activities, human body pose and action class.

Most action classification methods classify actions in

videos by using temporal cues. As the cues, a set of local

features (e.g. spatio-temporal points [18], a bag of spatio-

temporal words [26], a bag of spin-images [22], and a bag

of motion words [35]) are widely used because of their ef-

fectiveness. The difficulty in using the local features is to

extract them only from the region of a person of interest.

In particular, region extraction in still images is difficult,

while action classification in still images [33, 14, 37, 23] is

not only challenging but also useful for several uses (e.g.

context-based image retrieval and static cues for classifica-

tion in videos).

In addition to the local features, the effectiveness of

global scene features for action recognition has been proven

[15]. While the global features are weak and auxiliary for

identifying actions performed in an image, it can be ex-

(a) (b) (c) (d) (e) (f)
Figure 1. Pose representation with 10 body parts. (a) and (b) are

classified to the same action, badminton, and (c), (d), (e), and (f)

are baseball. Different poses are contained in the same class.

tracted without human region segmentation.

A human body pose in images is defined by, in general,

a deformable part model. The model consists of nodes and

links, which respectively correspond to a part and a geomet-

ric relationship between parts. Pose estimation is achieved

so that all parts are located in an image in accordance with

the body configuration of a target person (e.g. Fig. 1). The

deformable part model has two kinds of parameters, namely

the appearance parameters of each part and the relative ge-

ometric configuration between neighboring parts.

For detecting each part based on its appearance, image

features are crucial for coping with a huge variety of part

appearances. The features of each part can be divided into

several clusters and then trained individually (e.g. cluster-

ing based on the configurations of 2D parts [38] and 3D

parts [2]) for maintaining their discriminativity as well as

generality. Discriminative training of part appearance can

also improve part discriminativity [9, 1].

For parameterizing the relative configuration between

parts, pictorial structure models [10], are widely used as de-

formable part models because of their ability to efficiently

get the globally-optimal configuration of all parts.

For accurate pose estimation with a deformable part

model, optimizing the above two parameters (i.e. appear-

ance and configuration parameters) is a fundamental issue.

The contributions of this work are 1) to improve the ac-

curacy of pose estimation by training multiple deformable

part models in accordance with actions of interest and 2)

to employ an estimated pose as a local feature merged with
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global image features for improving action classification.

2. Related Work

Mutual action and pose recognition: While the above

mentioned algorithms for action classification and pose es-

timation work independently, these two types of recogni-

tion can enhance each other. Action classification can be

achieved by pose matching (e.g. view-invariant 3D pose

matching in videos [25, 31, 39]). In an opposite manner,

for pose tracking in videos, action-specific model selection

has been studied (e.g. switching dynamical models [4] and

efficient particle distribution in multiple pose models [12]).

An essential problem for mutual action and pose recog-

nition is that a human pose is required for action classifica-

tion achieved with the human pose. This is a chicken-and-

egg problem. To cope with this problem, joint recognition

of action and pose has been studied (e.g. [37, 40, 7]). Un-

like this approach, this paper proposes an iterative scheme

between action and pose recognition, where each recogni-

tion is simpler than joint recognition. In general, simplicity

results in robustness in recognition.

Recognition in still images: Compared with video anal-

ysis by the above methods [25, 31, 39, 4, 12], it is more

difficult to extract discriminative features from still images.

For action classification, a large variety of body poses might

be contained in the same action class. In examples in Fig. 1,

(a–b) and (c–f) show significantly different 2D body poses

in the same action classes, baseball and badminton, respec-

tively. The difference is caused by the following problems.

1) Class resolution: different primitive actions, batting and

pitching, are contained in the same class, 2) view depen-

dency: the same poses are captured from different view-

points, and 3) classification in still images: different mo-

ments (i.e. different poses) of batting are contained in the

baseball class. While problems 1 and 2 must be coped with

also in videos, problem 3 is a unique problem in still im-

ages.

Furthermore, one more difficulty in recognition in still

images is person localization, as tackled in [7]. This prob-

lem is clearly more difficult than the one in videos [30], in

which motion cues can be used for foreground object seg-

mentation. This difficulty is absent in classifying a scene,

where each target action is performed, by using global im-

age features. Indeed, the co-occurrence between actions and

scenes is a useful clue for mutually improving their classifi-

cation [24]. Unlike traditional approaches using only global

features (e.g. GIST [27]), more recent ones fuse multi-

ple features and/or classifiers; joint optimization of multi-

ple classifiers [19], simultaneous classification and annota-

tion using regional features [34, 20], classification using de-

formable part based models [28], and scene representation

with responses to a wide variety of objects [21]. In particu-

lar, the Object Bank [21] allows us to obtain the responses

to any kinds of objects including people and objects relevant

to the action, as well as background objects.

Objects interacting with a person of interest also gives

important clues for pose estimation (e.g. [13, 40]). While

the interacting objects might be more characteristic for

identifying the human pose than a global scene, this paper

focuses on the global features of the scene, which are easy

to be extracted from an image for robust recognition.

3. Basic Scheme

The proposed method iteratively performs action classi-

fication and pose estimation so that 1) action classification

is performed by global features and 2D pose-based features

and 2) a body pose is estimated by an action-specific de-

formable part model optimized to the action observed in

a still image. The overview of the proposed method is il-

lustrated in Fig. 2. For this iterative framework, we have

to cope with two issues; i) robust initialization of iteration

between action classification and pose estimation and ii) a

large variety of body poses that are observed in images of

the same action class.

The proposed method achieves robust initialization by

global features (denoted by ”Object Bank feature O” in Fig.

2), for which neither human localization nor human pose

estimation are required, for initial classification.

A variety of body poses in the same class are produced

by the three problems mentioned in the last section (i.e.

class resolution, view dependency, and classification in still

images). The pose variety in the same class makes it dif-

ficult to achieve 1) non-overlapping pose clustering among

different action classes and 2) precise pose modeling. The

proposed method alleviates these two difficulties as follows.

1) Inspired by a mixture of parts [38], a pose is featurized

by a set of relative positions of parent and child parts. This

featurization is robust to a partial change in the pose of the

whole body because the relative position between a parent

and its child parts is independent from that between other

parent and child parts. As well as the pose-based features

(denoted by ”Pose feature P ′

â” in Fig. 2), global features

are used for action classification in iterative steps (described

in Sec. 4.3). This is the difference from previous pose-

based action classification [25, 31, 39]. 2) For precise pose

modeling, after training images are divided to each action

class based on the ground-truth labels, poses in each ac-

tion class are clustered based on their similarity (described

in Sec. 4.2). Compared with clustering all possible poses

[38, 16, 17], pose clustering in each action class is easier

and results in precise modeling.

In what follows of this section, two base approaches for

action classification [21] and pose estimation [9, 38], which

are used in the proposed method, are described.
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Figure 2. Overview of the proposed method. Red, green, and black arrows depict the data flows of feature vectors, model parameters, and

estimated values, respectively. The model parameters are employed with the features for action classification and pose estimation, which

are performed in left and right dotted rectangles, respectively. Pose features, which are produced from estimated poses, are fed back to be

merged with global image features (i.e. Object Bank feature) for iterative action classification. After iteration between action classification

and pose estimation is finished, their final results are determined, as depicted by blue arrows.

3.1. Action Classification using Global Appearance
Features

The Object Bank [21] provides a set of high-level im-

age features with scale-invariant response maps of a va-

riety of generic object detectors. While the Object Bank

accepts any object detectors, 177 object detectors, which

are provided by its author’s codes, are used in our imple-

mentation. In total, the size of the Object Bank feature is

44604-dimension. A high-level representation of the fea-

tures has been demonstrated in terms of scene classification

with large-scale datasets.

The huge dimensional feature can be compressed by a

sparse coding regularization. The sparse coding allows us

to reduce the feature dimension up to 10 % or lower while

maintaining the classification accuracy.

3.2. Pose Estimation using Deformable part Models

A tree-based model is defined by a set of nodes, V , and

a set of links each of which connects two nodes, E. One

of the nodes is regarded as a root node. Each node has its

pose parameters (e.g. x and y positions, orientation θ, and

scale s) that localize the respective part. By optimizing the

pose parameters in accordance with a human pose in an im-

age, pose estimation is achieved. The pose parameters are

optimized by maximizing the score function below:

T (P ) =
∑

i∈V

Si(pi) +
∑

i,j∈E

P i,j(pi,pj), (1)

where pi and P denote a set of the pose parameters of i-th

part and a set of pi of all parts (i.e. P = [p
1
, · · · ,pNV ]

T
,

where NV denotes the number of nodes).

A unary term Si(pi) is a similarity score of i-th part at

pi. In our model, Si(pi) is the filter response using HOG

features [5], each of which consists of 5 × 5 cells and 18

orientation bins: Si(pi) = F iT
· φ(I,pi), where F i and

φ(I,pi) denote the filter of i-th part and the HOG extracted

from pi in image I . A pairwise term P i,j(pi,pj) = wi,jT
·

ψ(pi,pj), where wi,j is a weighted parameter, is a spring-

based score between i-th and j-th parts, which has a greater

value if the relative configuration of pi and pj is highly

probable. In our model, ψ(pi,pj) = [dxi,j , d
x2

i,j , d
y
i,j , d

y2

i,j ]
T ,

where dxi,j and dyi,j respectively denote xi −xj and yi − yj ,

where (xi, yi) is the location of i-th part.

In a tree-based model proposed in [10], the globally op-

timized pose parameters, P̂ , can be acquired efficiently by

dynamic programming. To make this model work robustly

to in-plane rotation and foreshortening of limbs, each rigid

part (e.g. limb) is divided into several smaller parts in [38].

In accordance with this base model [38], 26 parts were used

in our implementation; 2 for the head, 4 for the torso, 10 for

the shoulders to the hands, and 10 for the hips to the feet.

4. Iterative Action and Pose Recognition

4.1. Initial Action Classification with Global Ap­
pearance Features

Initial action classification is achieved by employing

only Object Bank features. The extracted feature (denoted

by O) is classified by linear [8]/nonlinear [3] SVM. These

SVM classifiers give us not only the action class of O but

also its probability estimate PO
a denoting the probability to

belong to a-th action (e.g. PO
1
· · ·PO

Na in Fig. 2) as pro-

posed in [36].

4.2. Pose Estimation by Action­specific Deformable
part Models and Action Probability

Next, pose estimation is performed independently using

all action-specific models, which are trained in a training



phase. All training images are divided to those of each

action based on the ground-truth action labels. Then each

action-specific model is trained with the training images of

its respective action.

Training data in each action-specific model are clustered

in each part i. This part clustering is useful for precisely

representing the model parameters (i.e. F i and wi,j) of i-th
part. Our method adopts clustering based on the 2D config-

uration of parts as with [38]. In [38], each part i has its x-y
location and scale parameter s as its parameters. Instead of

having an orientation parameter θ, each part model consists

of a mixture of types as follows. The training data of i is

clustered depending on the relative location of iwith respect

to its parent part. This clustering is achieved by K-means

with 5 or 6 clusters depending on the part in our experi-

ments in accordance with the base model [38]. The ID of

the cluster is called a type, which is denoted by t. The pose

parameter of i-th part, pi, is expressed by [xi, yi, si, ti].

The above two kinds of independent modeling (i.e.

action-specific models and clustering based on the 2D con-

figuration of parts) are essentially different in terms of the

number of the estimated pose(s).

Action-specific models: GivenNA action-specific models

(denoted by “Model1 · · · ModelNA” in Fig. 2), all of

them are used independently for acquiring NA poses

(denoted by “P 1 · · ·PNA” in Fig. 2), each of which

has the best score in each action-specific model. The

action-specific modeling is effective in particular for

representing the typical configurations of body parts

depending on the action; for example, a handstand-like

pose in athletics.

Clustering based on the 2D configuration of parts:

Only one best pose of the whole body is acquired

in each model, regardless of the number of types.

Specifically the type having the best score is selected

in each pair of parent and child parts.

The proposed method obtainsNA poses (denoted by P a

where a ∈ 1, · · · , NA), each of which has the top score

(denoted by sa) in a-th model. With the score sa and the

probability estimate of a-th action, PO
a , which is obtained

in action classification, the best pose P â (denoted by “Best

pose P â” in Fig. 2) is selected so that:

â = argmax
a

(saP
O
a ) (2)

While previous clustered models [16, 17] have no

weights between different models, the proposed method has

the benefit that the probability estimate of an action gives

the weight to each model as shown in model selection (2).

4.3. Action Classification with Global Appearance
Features and Pose Features

To provide an estimated pose as an important clue to ac-

tion classification, the absolute positions of parts in an im-

age, P â, should not be used as they are. This is because a

pose feature should fit with the region of a human body in

any location and of any scale. In our method, P â is changed

to the following expression, P ′

â (denoted by “Pose feature

P ′

â”), represented by the normalized relative positions with

respect to the center of all parts (denoted by (Cx, Cy)):

P ′

â = [x<â,1> − Cx, y<â,1> − Cy, · · · ,

x<â,NV > − Cx, y<â,NV > − Cy]
T , (3)

where x<â,i> and y<â,i> denote x-y positions of i-th part in

P â. In the body model with 26 parts, P ′

â is 26× 2 = 52D.

In our implementation, the pose feature (3) is compressed

by a sparse coding regularization, as with Object Bank fea-

tures [21]. This compression is for improving not efficiency

but classification accuracy. The accuracy is improved by

the compression because some components in (3) are com-

pletely indistinguishable among actions. The compressed

dimension was empirically determined to be 22.

To leverage P ′

â for action classification, the following

two kinds of methods are possible:

• P ′

â is concatenated to the Object Bank feature O for

obtaining a new feature for action classification:

[OT P ′

âT ]T (4)

This feature is then employed for action classification

by multi-class SVM [3, 8], as with initial action clas-

sification. Here again multi-class SVM gives us the

probability estimate of each action (denoted byPO,P
a ).

• Multi-class SVM [3, 8] is applied to P ′

â in order to

estimate the probability of being classified into action

a. This probability estimate, PP
a , is then multiplied by

PO
a as follows:

PO,P
a = PP

a P
O
a (5)

The max PP,O
a of all actions is detected, and a-th ac-

tion corresponding to the max score is regarded as the

classification result. (5) assumes that global scene fea-

tures are independent of pose features, P ′

â.

With the newly estimated probabilities, Pa ∝ PO,P
a ,

pose estimation is executed again. Iteration between pose

estimation (Sec. 4.2) and action classification (Sec. 4.3) is

performed like the hard EM algorithm, where action clas-

sification and pose estimation are respectively regarded as

the E and M steps, observed data are global features, latent

variables are action classification probabilities and action-

specific models, and unknown parameters are the pose pa-

rameters of the whole body. Note that, in the iterative steps,

PO,P
a is used instead of PO

a in Eq. (2).



Athletics Badminton Baseball Gymnastics Parkour Soccer Tennis Volleyball General

Figure 3. Sample images of nine action classes.

Table 1. The number of images of each action class in training and test data.

Athletics Badminton Baseball Gymnastics Parkour Soccer Tennis Volleyball General

Training 32 145 157 44 70 147 103 112 190

Test 49 138 133 54 91 147 99 121 168

Table 2. Comparison of PCP. (a) our model (final iteration), (b) our model (initial iteration), (c) mixture model of non-oriented parts [38],

(d) clustered pose [17], (e) parts dependent joint regressor [6], and (f) poselet conditioned pictorial structures [29].

Torso Head Upper-legs Lower-legs Upper-arms Lower-arms Total

(a) Ours (final iter) 87.3 77.9 74.7 68.5 54.1 36.9 63.4

(b) Ours (initial iter) 86.9 77.9 73.3 67.8 54.1 36.4 62.8

(c) Mixture of parts [38] 84.1 77.1 69.5 65.6 52.5 35.9 60.8

(d) Clustered pose [17] 88.1 74.6 74.5 66.5 53.7 37.5 62.7

(e) Joint regressor [6] 81.6 79.2 66.5 61.0 45.1 24.7 55.5

(f) Poselet PS [29] 87.5 78.1 75.7 68.0 54.2 33.9 62.9

5. Experiments

We tested the proposed method with the LEEDS sports

dataset [16], in which 2000 pose-annotated images are in-

cluded. In all comparative experiments in this section, 1000

images were used for training and other 1000 images for

evaluation. Each image was manually annotated by one

of the following nine action classes: athletics, badminton,

baseball, gymnastics, parkour, soccer, tennis, volleyball,

and “general”1. The class general is required because the

objective of action-specific models is to precisely represent

the pose variation triggered by each action, while general

pose variations should be modeled by non-selective train-

ing images. Figure 3 shows examples of the nine classes.

The number of sample images clustered to each action class

is listed in Table 1.

In training, 1) the models of multi-class SVM for action

classification and 2) action-specific deformable part mod-

els for pose estimation are acquired. For augmenting the

action-specific deformable part models by discriminative

training [9], negative samples were given from background

images in the INRIA Person database [5].

The results of initial action classification only with the

Object Bank features are shown in Fig. 4. Non-linear SVM

1The action annotations will be available in the author’s website.

[3] and linear SVM [8]2 with high-dimensional and com-

pressed Object Bank features were tested. The dimension

of the compressed feature was 400, which was around 1%

of the high-dimensional one. While the compressed fea-

tures could get nice results as reported in [21], the high-

dimensional features were still better. As regards accuracy

in different actions, it can be seen that a smaller number of

training data resulted in lower accuracy (i.e. lower accuracy

in athletics, gymnastics, and parkour).

Then the probability estimate of each action class is used

in pose estimation. Even if the probability estimate of a cor-

rect class is not the max score, it gives a useful clue to pose

estimation if it is 1) not much lower than the max score and

2) relatively higher than other scores. Figures 5 and 6 show

evidences about these two requirements. Figure 5 shows the

mean of pcor/pmax, where pcor and pmax denote the prob-

ability estimate of a correct class and the max score of all

probability estimates in each image, respectively. It can be

seen that 1) nonlinear SVM with high-dimensional features

(indicated by blue bars) was superior to other classifiers and

2) in many classes, pcor was not much lower than pmax (at

least, 60% of the max score) by using nonlinear SVM with

high-dimensional features. Therefore, nonlinear SVM with

high-dimensional features was used for obtaining sa in Eq.

2For SVM, default parameters given by [3] and [8] were used.
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Figure 4. Comparison of classification performance of different

classifiers in initial action classification with high-dimensional and

compressed Object Bank features.
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Figure 5. Comparison of probability estimates of correct classes

versus classes having the max scores in initial action classification.
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Figure 6. Comparison of probability estimates of correct classes

versus other classes in initial action classification. Nonlinear SVM

with high-dimensional features was used. The mean probability of

the other classes is shown in the graph (indicated by red bars).

(2). Figure 6 shows the mean of pavr/pmax, where pavr de-

notes the mean of probability estimates of all classes except

a correct class in each image, estimated by nonlinear SVM

with high-dimensional features. In addition to pavr/pmax

(indicated by red bars in Fig. 6), pcor/pmax is also indi-

cated by blue bars for comparison. It is clear that pcor was

higher than other scores on average.

Initial pose estimation accuracy is shown by red bars in

Fig. 7. The accuracy is evaluated by PCP (percentage of

correctly estimated body parts) [11]. Note that gymnas-

tics and parkour classes used the same action-specific model

that was generated from their training images. This is be-

cause 1) the training images of these classes are fewer than

those of other classes and 2) human poses in the two classes

are similar. For comparison, the results of the base model
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Figure 7. Comparison of pose estimation accuracy by PCP of dif-

ferent models. The same data is shown also in Table 2.
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Figure 8. Comparison of classification performance of different

classifiers in action classification by pose features with high-

dimensional Object Bank features. The results were obtained by

nonlinear SVM after twice-iterated action-and-pose recognition.
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Figure 9. 2D representation of a 52D pose feature space.

(i.e. mixture of parts) [38], clustered pictorial structure

models [17], and several state-of-the-arts [6, 29] are shown.

Since the proposed method employs additional clues (i.e.

action class), it is natural that the accuracy of the proposed

method is better than others.

Next, action classification using high-dimensional Ob-

ject Bank features with pose features was performed. For

this classification, two kinds of methods that respectively

use (4) and (5) were tested. The results of action classifi-

cation after two iterations between action classification and

pose estimation are shown in Fig. 8. For comparison, the

initial results obtained only with the Object Bank features

are also indicated by blue bars in the figure, while those ob-

tained by (4) and (5) are indicated by red and green bars,

respectively. The classification rates of gymnastics, park-

our, and volleyball were improved from the initial results,



(Ours) 10/10 9/10 8/10 9/10 6/10 10/10 10/10 8/10

(Base) 5/10 1/10 6/10 4/10 0/10 0/10 0/10 5/10
Figure 10. Pose estimation results. For each test image, two results are shown: (Top) the proposed method and (Bottom) a mixture model

of parts [38], which is the base model of the proposed method. The number of correctly localized parts is shown under each result. All of

the images were selected from gymnastics and parkour classes, where human poses are significantly different from natural upright poses.

while those of other classes were close enough between the

initial and final results. To validate this result, the distri-

bution of the pose features is shown in Fig. 9. Indeed it

can be confirmed that many features of gymnastics, park-

our, and volleyball are apart from those of others. On the

other hand, most of other features are crowded. This means

that the pose feature (3) should be improved so that those of

different classes are distinguishable from each other.

Pose estimation accuracy after two iterations is shown

by blue bars in Fig. 7. It can be seen that the accuracy

was a bit improved compared with the results of the initial

estimation (indicated by red bars). Figure 10 shows several

examples of the estimated poses. The results of the base

method [38] are also shown in the figure. As shown in these

examples, the proposed method was successful in particular

in gymnastics and parkour in contrast to the base method

[38]. This is because the body poses of these actions are

significantly different from those of other actions, but the

variety of poses in each action was represented well by the

proposed action-specific models.

On the other hand, Fig. 11 shows two examples of un-

successful results obtained by the proposed method. In the

lefthand example (i.e. parkour image), both of the proposed

method and the base method [38] failed completely. In the

righthand example (i.e. soccer image), the proposed method

was inferior to the based method [38]. An inappropriate

action-specific model, which was selected due to miss ac-

tion classification, caused such an inferior result.

The contributions of the proposed method validated in

the experimental results are summarized as follows:

• The positive effects of action-specific deformable part

models are proved as shown in Table 2 and Fig. 10.

• Pose features improve action classification as shown in

(Ours)0/10 (Base)0/10 (Ours)8/10 (Base)10/10
Figure 11. Unsuccessful results of the proposed method. For com-

parison, the results of the base model [38] are also shown.

Fig. 8, while their impact is relatively small in contrast

to the action-specific models.

6. Concluding Remarks

This paper proposed an iterative method for human ac-

tion classification and pose estimation in still images. Ac-

tion classification is achieved by global appearance fea-

tures with pose features, and pose estimation is enhanced

by action-specific deformable part models.

Future work includes developing 1) joint optimization of

multiple deformable part models that share the basic struc-

ture of a human body and 2) more discriminative pose fea-

tures that are robust to the change in a viewpoint. The for-

mer is useful for improving pose estimation even if a small

number of training images are given in each action class.

For this optimization, hierarchical modeling such as [32]

might be useful. The latter enables more correct action clas-

sification. Dividing each action class into sub-classes (e.g.

“baseball” to “pitching” and “batting”) might be also effec-

tive for more detailed deformable part modeling. On the

other hand, if a more general framework, which is not lim-

ited to predefined action classes, is required, pose models

should be produced for unsupervised clusters of image fea-

tures such as the Object Bank.
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