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PAPER

Classification of Gait Anomaly due to Lesion Using Full-Body Gait
Motions

Tsuyoshi HIGASHIGUCHI†, Toma SHIMOYAMA†, Nonmembers, Norimichi UKITA†∗a), Senior Member,
Masayuki KANBARA†, Member, and Norihiro HAGITA†, Fellow

SUMMARY This paper proposes a method for evaluating a physical
gait motion based on a 3D human skeleton measured by a depth sensor.
While similar methods measure and evaluate the motion of only a part of
interest (e.g., knee), the proposed method comprehensively evaluates the
motion of the full body. The gait motions with a variety of physical dis-
abilities due to lesioned body parts are recorded and modeled in advance
for gait anomaly detection. This detection is achieved by finding lesioned
parts a set of pose features extracted from gait sequences. In experiments,
the proposed features extracted from the full body allowed us to identify
where a subject was injured with 83.1% accuracy by using the model op-
timized for the individual. The superiority of the full-body features was
validated in in contrast to local features extracted from only a body part of
interest (77.1% by lower-body features and 65% by upper-body features).
Furthermore, the effectiveness of the proposed full-body features was also
validated with single universal model used for all subjects; 55.2%, 44.7%,
and 35.5% by the full-body, lower-body, and upper-body features, respec-
tively.
key words: gait motion, full-body motion, lesioned part, 3D human skele-
ton

1. Introduction

The number of people suffering from chronic diseases is
constantly rising. Today, more than three quarters of
the elderly population are suffering from chronic diseases,
independent of the economic, social, and cultural back-
ground [1]. Such diseases can be possibly avoided or de-
creased if people often undergo a medical examination and
find the early symptoms of these diseases [2]. It is, however,
difficult for most people to frequently have supports by ex-
perts such as medical doctors and therapists. In this work,
we focus on the physical fitness of a lower body, in particu-
lar, a gait motion, which is crucial to maintain the quality of
life.

As people get older, most of them may have the symp-
toms of lesions and/or aging on the lower body more or less.
Such symptoms transfer in various ways such as insensitive
sensation, and motor malfunction [3], [4]. These symptoms
cause a change in the patterns of a gait motion [5]. Typical
effects with aging in walking are characterized by various
factors such as walking speed, step width, and leaning for-
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Fig. 1 Lesioned-part identification using a local appearance (upper row)
versus an full-body appearance (lower row). In examples shown in this fig-
ure, the right knee of a subject was tightly bandaged. At each frame, gait-
phase-synchronized bodies in a natural motion (left side at each frame) and
a motion with a lesioned right knee (right side at each frame) are shown.
While differences between these two motions at each frame are not signifi-
cant, the pose of the full body with the lesioned right knee differs from the
one in the natural motion.

ward angle [6]–[8]. The risk of falling is also affected by
several stability factors (e.g., walking speed, toe clearance,
and lateral body sway) [9]–[11].

This paper proposes a method for easy-to-use diagno-
sis that supports the evaluation of physical patterns in gait.
For this evaluation, the proposed method classifies several
symptoms of lesions on the lower body (e.g., knees and an-
kles), which are observed in gait.

For precisely evaluating symptoms observed in gait
motions, our contribution is to employ appearance informa-
tion extracted from the full body rather than local body parts
such as knees and ankles. Figure 1 allows us to intuitively
understand the effectiveness of the full body appearance. In
the upper row, the local appearance of a lesioned right knee
is shown. This local appearance reveals less difference be-
tween a natural motion (shown in the left-hand side at each
frame) and a motion with a lesioned right knee (shown in
the right-hand side at each frame). On the other hand, we
can easily see differences between these two motions in the
appearance of the full body shown in the lower row; for ex-
ample, the upper body with the lesioned right knee is in-
clined backward and to the left for balancing. In this paper,
a set of gait features is employed and appropriately pruned
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Fig. 2 Overview of the proposed method. The learning and identification steps are shown in lower
and upper rows, respectively. Data are enclosed by rectangles and their flows are visualized by arrows
in the figure.

for robust lesioned-part identification.
In contrast to our earlier work [12], additional experi-

ments using the natural gait sequences of elderly people are
also shown. Since all experiments in the earlier work used
imitated gait data in which the lower-body of subjects were
bandaged or immobilized, the additional experiments using
the natural gait sequences are useful for verifying the effec-
tiveness of the proposed method in real scenarios.

2. Related Work

The proposed method employs a depth sensor for the eval-
uation of a 3D gait motion, which is expected to be more
informative for lesioned-part identification than silhouette-
based gait motions [13]. The depth sensor is able to robustly
reconstruct the 3D pose (i.e., 3D positions of joints) of a
person of interest [14], [15] rather than a conventional RGB
camera. A Kinect V2 sensor was used in our experiments,
and its accuracy is better than that of Kinect V1 [16], [17]
for several tasks related to gait analysis [18], [19].

While such a camera-based sensor can observe people
only within its field of view, people are not required to carry
any wearable sensors [20] and their motions are not affected
by these sensors. In addition, for our goal (i.e., finding
the symptoms in a gait motion), 24-hour observation using
wearable sensors is not necessarily required.

A temporal sequence of a 3D body pose is defined as
a gait motion. From the gait motion, we can extract sev-
eral features representing physical symptoms caused by ag-
ing and/or physical disability. For these features, walk-
ing speed, stride, pace, etc. are useful [21]. For example,
walking speed, stride, and pace become slow, short, and
slow, respectively, due to the motor function decline [22].
As well as the walking speed, its acceleration is different
between healthy people and elderly and/or disabled peo-
ple [23], [24]. It is also known that the anteversion of pelvis
becomes smaller and left-right asymmetric due to the hemi-
plegia arthrosis [25].

The aforementioned features are well known in the lit-
erature in physiotherapy and biomechanics. However, these
features are extracted from only target body parts/joints in

previous work mentioned above. However, we know intu-
itively that not only the motion of lesioned part(s) but also
the one of the full body is affected as the symptom of aging
and/or physical disability. This paper proposes a method
that identifies lesioned part(s) based on gait motion features
extracted from the full body. While the closest work to our
method is presented in [26], this method [26] analyzes the
motion variation of the full body under an assumption that
a lesioned body part is known. For the purpose of finding
such lesioned part(s), this is a kind of chicken-and-egg prob-
lem. On the other hand, our proposed method finds lesioned
part(s) and estimated their symptoms (i.e., how severe the
symptom is) from gait features extracted from a temporal
sequence of a 3D body pose.

3. Lesioned-Part Identification

3.1 Overview

The overview of the proposed method is illustrated in Fig. 2.
In its learning step (bottom row in Fig. 2), a number of

gait patterns including the symptoms of lesions on various
body parts are observed by a depth sensor, Kinect V2. Each
observed depth sequence is used to estimate the sequence
of 3D body poses (i.e., skeletons) by using a pose estima-
tion model [14], [15], as shown in “Gait measurement” in
Fig. 2. From the sequence of estimated 3D skeletons, a set
of gait features are extracted. Since each set of gait features
is labeled with the lesioned body part, a classifier (“Classi-
fication model” in Fig. 2) can be trained.

When the depth sequence of a gait motion is observed
for lesioned-part identification, its gait features are extracted
as in the learning step. Then the set of the gait features is
classified in order to identify the lesioned part.

3.2 Gait Features Representing the Motion of the Full
Body

A set of gait features are detected from the 3D skeletons of
one gait cycle. This gait cycle is extracted from the observed
sequence of the 3D skeleton so that each cycle begins and
ends when the left knee is in front of and furthermost from
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the pelvis.
The 3D coordinates of the raw gait data are represented

in Kinect’s coordinate system with the origin set to the op-
tical center of Kinect. The 3D coordinates of each gait data
are spatially aligned so that (1) the z-axis coincides with the
walking direction of a subject and the y-axis is equal to the
vertical upward axis and (2) the origin at each frame co-
incides with the spine base. The walking direction is ap-
proximated by the 3D direction from the spine base at the
beginning frame to that at the ending frame.

All gait cycles are temporally normalized so that all of
them consist of the same number of frames. In the normal-
ized gait cycle, the 3D skeleton of each frame (denoted by Pi

for i-th frame) is synthesized from observed skeletons with
linear interpolation:

Pi =

(
di(+)

di(−) + di(+)
P̂i(−)

)
+

(
di(−)

di(−) + di(+)
P̂i(+)

)

where P̂i(−) and P̂i(+) denote the observed skeletons whose
observed times are closest to the time of i-th frame. P̂i(−)

and P̂i(+) are observed prior to and later than Pi, respectively.
di(−) and di(+) denote respectively the time differences from
the time of i-th frame to the observed times of P̂i(−) and P̂i(+) .

From each frame in the normalized temporal sequence,
the following gait features are computed:

1. Relative x, y, z positions between the mid-spine and
each joint/endpoint

2. Relative x, y, z velocities between the mid-spine and
each joint/endpoint

3. Relative x, y, z accelerations between the mid-spine and
each joint/endpoint

4. Angle of each joint
5. Angular velocity of each joint
6. Walking velocity along a moving direction
7. x, y, z positions of a body centroid
8. x, y, z velocities of a body centroid

From a 3D skeleton reconstructed by a Kinect V2, rel-
ative positions, velocities, and accelerations from the mid-
spine to the head, neck, pelvis, both shoulders, both elbows,
both wrists, both groins, both knees, both ankles, and both
feet (in total, 17 points) are computed for the aforemen-
tioned features 1, 2, and 3, respectively. Joint angles and an-
gular velocities are computed in the spine, neck, both shoul-
der blades, both shoulders, both elbows, both groins, both
knees, and both ankles (in total, 14 points) for the features 4
and 5, respectively. The joint angle (radian) of joint j is
represented by the 3D position of j and those of j’s parent
and child joints. A body centroid is determined based on a
weight distribution in a human body; according to a report
from a physiotherapy, the weights of the head, neck, both
arms, torso, and both legs are 4%, 3%, 10%, 48%, and 35%,
respectively.

In addition to eight features listed above, each of them
is subtracted from the mean of natural gait motions in train-
ing data. These features are called mean-normalized fea-
tures. In total, 8 + 8 = 16 features are extracted from each

frame. All of these features extracted from all frames are
concatenated to compose a gait feature vector.

3.3 Dimensionality Reduction of the Gait Feature

The dimension of the above mentioned gait feature vector
is huge. Specifically speaking, the concatenation of 16 gait
features is a 376-dimensional vector: ((17 × 3) + (17 × 3) +
(17 × 3) + 14 + 14 + 1 + 3 + 3) × 2 = 376. For improving
the discriminativity of the gait feature vector, its dimension
is reduced by two schemes, namely backward search (a.k.a.
backward feature elimination) and linear discriminant anal-
ysis (LDA), as follows:

Step 1: Assume the current dimension of a gait feature is
N. initially, N = 376. For backward search, all gait
samples are divided into training and validation sam-
ples, and the training samples are used for producing
N + 1 LDA modes below:

• A LDA model is trained with N components of all
training samples.
• N LDA models are trained with (N − 1) compo-

nents of all training samples so that one of N com-
ponents in the gait feature vector is not used for
each of N LDA models.

Step 2: All of these (N + 1) LDAs are tested with the vali-
dation samples.

Step 3: If one of LDA models with (N − 1) components
(which is trained without k-th component) gets the best
score in this validation, this k-th component is removed
from the gait feature vector. Then, go back to Step 1.
Otherwise, namely if the LDA model with N compo-
nents is the best, the backward search ends. This LDA
model is used for lesioned-part identification.

With training data stored in the selected LDA model,
k-Nearest Neighbor (k = 3 in our experiments) is employed
for lesioned-part identification.

4. Experiments

4.1 Dataset Collection

For realistic applications, it’s better to collect and use the
data of people who are actually lesioned. It is, however,
difficult to collect a number of such data. Instead of using
only natural data, two kinds of gait data were collected. In
the first one, spurious lesions were given to the body parts
of subjects by bandaging or immobilizing them as shown in
Fig. 3. The second one was the natural gait data of elderly
people. Both kinds of gait data were observed in a labora-
tory setup (Fig. 4).

The spurious lesions, which were determined under the
direction of a physiotherapist, emulate the functional decline
of joints caused by aging; for example, bending and stretch-
ing the knee [27] and the plantar flexion and dorsiflexion of
the ankle [28]. The following spurious lesions were given to
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Fig. 3 Spurious lesions given for our experiments.

Fig. 4 Environment for capturing our gait dataset. A subject begins to
walk in the acceleration area. While the subject walk through the measure-
ment area, the temporal sequence of gait features are extracted.

physically-healthy people in our experiments:

Gait motion with bandaged knee(s): When the knee of a
subject was bent 90 degrees, it was bandaged weakly
or tightly. Each of both knees was bandaged. In addi-
tion to two by two combinations (i.e., left/right knees
bandaged weakly/tightly), the gait motion of each sub-
ject was observed also when both knees were bandaged
tightly. In total, five conditions were observed. The
motion of a bandaged knee is similar to a decrease in
the articular range of motion due to aging.

Gait motion with immobilized knee(s): When the knee of
a subject was straight, it was immobilized with a splint.
In this immobilization condition, the knee was almost
immobilized. This condition is similar to the symptom
of a muscle strain. Each of both knees was immobi-
lized separately. That is, two conditions were observed
for each subject.

Gait motion with bandaged ankle(s): When the ankle of
a subject was bent 90 degrees, it was bandaged. For ex-
periments, left ankle, right ankle, and both ankles were
bandaged separately. In total, three conditions were ob-
served for each subject.

As well as these 10 gait motions (i.e., 5 from bandaged
knees, 2 from immobilized knees, and 3 from bandaged an-
kles), natural gait data with no bandage are measured. Even-
tually, 11 gait motions are defined for classification experi-
ments.

Table 1 Effect of dimensionality reduction using backward search for
lesioned-part identification. The mean of all gait motions is shown in each
subject. For identification in i-th subject, training data of only i-th subject
was used to train the LDA. For each subject, the best score is shown by
bold.

Subjects All features (%) Selected features (%)
A 62.7 73.6
B 60.5 66.8
C 67.7 80.5
D 76.8 87.2
E 61.8 75.9
F 67.3 80.5
G 86.8 91.4
H 86.3 91.4
I 71.8 83.6
J 73.6 79.6
Mean 71.6 81.1

The spurious legions were given to 10 subjects. All
of them were twenties males. Each of 11 gait motions was
captured 10 times for each subject. In total, 110 gait cycles
were captured for each subject. Since only 10 twenties were
measured, the variation of their gait patterns is limited.

The gait data of elderly people were captured in an el-
derly care house; Kyoto Yuyu-no-sato. Gait data were mea-
sured from 206 subjects ranging from 48 to 93 years old;
the mean age was 78.5. While more subjects were also cap-
tured, their gaits were significantly different from others due
to some severe physical disabilities. Since these disabili-
ties were unknown unlike spurious legions, these subjects
were removed from the dataset used in this work. That is,
only natural gait motions with no physical problems were
observed from elderly people, and used for increasing the
variation of gait data in order to bring our experiments closer
to real scenarios.

4.2 Experiments Using Limited Variation of Gait Data:
Model Optimized for the Individual

In Sects. 4.2 and 4.3, the proposed method is evaluated us-
ing only the gait dataset of 10 young subjects with spurious
lesions. Since, in this dataset, the number of the subjects
and the gait variation are small in contrast to those of the
elderly-person dataset, lesioned-part identification is easier.
After investigating the parameters of the proposed method
with this easier dataset, the effectiveness of the proposed
method is verified with a larger dataset in the next Sect. 4.4.

In this Sect. 4.2, all experiments were conducted so that
the gait of i-th subject was tested with an individual model
that was trained with only i-th subject’s gait data. For each
subject, a leave-one-out cross validation procedure was per-
formed.

First of all, the effect of dimensionality reduction was
investigated. In our experiments, feature selection using
backward search was achieved by employing all data of all
10 subjects with the spurious legions. The result of this
backward search was used for dimensionality reduction in
all experiments shown in Sects. 4.2, 4.3, and 4.4. As the
result of backward search, gait features (1), (5), (8), (1′),
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Table 2 Confusion matrix of lesioned-part identification for 11 gait motions. All results were ob-
tained with the selected features. The vertical and horizontal axes show the gait class of a query data
and the estimated class, respectively. Values above 10 % are highlighted in gray cells.

Condition
Natural

Right knee Left knee Both Right Left Both
Weak Tight Immobilized Weak Tight Immobilized knees ankle ankle ankle

Natural 91.5 1.5 0.5 0 3.0 0.5 0 1.0 1.5 0.0 0.5

Right knee
Weak 0 84.0 12.0 0 1.5 0 0 1.5 1.0 0 0
Tight 2.0 16.0 74.5 0 2.5 1.5 0 2.0 1.0 0 0.5
Immobilized 0 1.0 1.5 95.5 0 0 0.5 1.5 0 0 0

Left knee
Weak 3.0 1.5 1.0 0 69.0 18.0 0 3.0 1.0 3.0 0.5
Tight 2.0 0.5 2.5 0 24.0 57.5 0 4.5 1.0 6.5 1.5
Immobilized 0 0 0 0 2.0 0 98.0 0 0 0 0

Both knees 0 2.5 3.5 0.5 1.5 2.5 0.5 88.0 0.5 0.5 0
Right ankle 0.5 1.0 3.0 0 2.5 1.0 0 1.5 81.5 1.0 8.0
Left ankle 1.5 0 0 0 6.0 3.5 0 0.5 4.0 74.5 10.0
Both ankles 0 0 1.0 0 2.0 0.5 1.0 0 8.5 9.5 77.5

Table 3 Confusion matrix of lesioned-part identification for 9 gait motions. Both for right and left
knees, tightly- and weakly- bandaged motions were merged. All results were obtained with the selected
features.

Condition Natural Right knee Left knee Both knees Right ankle Left ankle Both ankles

Natural 90.0 5.0 2.0 1.0 0.5 1.0 0.5
Right knee 0.3 93.8 2.7 1.8 0.7 0 0.7
Left knee 1.3 2.7 91.7 1.3 0.7 2.0 0.3
Both knees 0 8.5 5.0 85.5 0.5 0.5 0
Right ankle 0.5 5.5 4.0 0.5 79.0 2.0 8.5
Left ankle 0.5 0 6.5 0 4.0 79.0 10.0
Both ankles 0 1.0 1.0 0.5 7.0 10.0 80.5

Table 4 3-class classification accuracy. This classification identifies the
symptom on a lesioned part, after the initial classification, whose results
are shown in Table 3, determines the lesioned part (right or left knees in ex-
amples shown in this table). The mean of classification accuracy is 77.1%.

Right knee (%) Left knee (%)
Weakly-bandaged 85.0 87.0
Tightly-bandaged 82.5 87.0
Immobilized 99.1 98.5

Table 5 Results of 3-class classification using local features. While this
classification employs only several features extracted around a target part
(i.e., right or left knee), the results shown in Table 4 were obtained with the
features of the full body. The mean of classification accuracy is 65.0%.

Local features Right knee (%) Left knee (%)
Weakly-bandaged 58.0 69.5
Tightly-bandaged 44.0 50.0
Immobilized 85.5 83.0

(6′), (7′), and (8′), which are described in Sect. 3.2, were se-
lected†. (l′) denotes the mean-normalized feature of feature
(l). Comparison between results using all features and the
selected features is shown in Table 1. This table shows the
percentage of correctly-identified lesions. The performance
was increased by around 10% on average.

With the selected features, a confusion matrix is com-
puted. Each value in the confusion matrix is the mean of re-
sults for all subjects. Table 2 shows the results of lesioned-

†For efficiency, backward search was executed so that (1) one
gait feature is selected from 16 gait features and (2) all components
in the selected gait feature were not used at each search step rather
than each component of a gait feature vector.

part identification when all 11 kinds of gait motions were
classified. The vertical and horizontal axes of the table show
the gait class of a query data and the estimated class, respec-
tively. This result is equivalent to the one shown in Table 1;
the mean of diagonal values in Table 2 is 81.1, which is
also shown as the mean in Table 1. As expected, it can be
seen that it was difficult to discriminate between weakly-
and tightly-bandaged knees.

To improve the discriminativity between different
symptoms (e.g., weak and tight bandages) in the same body
part, a two-step identification scheme was tested. In this
scheme, only the position of lesion is identified initially. In
our experiments, motions of tightly- and weakly- bandaged
joints as well as immobilized joints were merged in each
of right and left knees. If such a part is considered to be
lesioned by the initial identification, the degree of the le-
sion is determined by a classification model that is trained
by only the samples of lesions in this part; for example, the
motions of weakly- and tightly-bandaged knees and immo-
bilized knees are used for training for each of right and left
knees. The results of initial classification (i.e., classification
among 7 gait motions) are shown in Table 3. Table 4 shows
the results of the second step where the motions of weakly-
and tightly-bandaged knees and immobilized knees are clas-
sified after the initial classification. The final mean score of
this two-step identification is 83.1%††, which is 2% above

††This accuracy is computed from the diagonal values of the
confusion matrix in Table 3 and the results of 3-class classification
in Table 4 as follows: (90.0+ 3× (93.8× 85.0+82.5+99.1

3 )+ 3× (91.7×
87.0+87.0+98.5

3 ) + 85.5 + 79.0 + 79.0 + 80.5)/11 = 83.1
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Table 6 Confusion matrix of lesioned-part identification using gait features extracted from only the
lower body.

Condition
Natural

Right knee Left knee Both Right Left Both
Weak Tight Immobilized Weak Tight Immobilized knees ankle ankle ankle

Natural 83.5 2.5 2.5 0 4.0 0.5 0 0.5 2.5 3.0 1.0

Right knee
Weak 0 64.5 27.0 0.5 2.0 0.5 0 4.0 0 0.5 1.0
Tight 1.5 33.0 55.0 0.5 3.5 1.0 0 4.0 1.5 0 0
Immobilized 0 1.5 2.0 95.0 0.5 0 0 0.5 0 0 0.5

Left knee
Weak 3.5 1.0 1.5 0 57.0 21.5 1.5 4.0 1.5 5.0 3.5
Tight 1.0 1.5 0.5 0 33.5 55.0 0.5 3.5 1.0 2.5 1.0
Immobilized 0 0 0 0 1.0 0.5 98.5 0 0 0 0

Both knees 1.0 2.5 2.5 0.5 4.5 3.5 1.0 83.5 0 0.5 0.5
Right ankle 2.5 1.5 3.0 0 2.0 0.5 0 0 78.5 2.0 10.0
Left ankle 1.5 0 1.0 0 4.5 2.0 0 0.5 4.5 74.0 12.0
Both ankles 0 0 0 0 3.0 1.5 0 0 11.5 14.0 70.0

Table 7 Confusion matrix of lesioned-part identification using gait features extracted from only the
upper body.

Condition
Natural

Right knee Left knee Both Right Left Both
Weak Tight Immobilized Weak Tight Immobilized knees ankle ankle ankle

Natural 86.5 5.5 1.5 0.5 1.5 1.0 0 1.5 0.5 1.0 0.5

Right knee
Weak 3.5 68.5 14.5 1.0 4.5 0 0.5 3.0 3.0 0.5 1.0
Tight 0.5 13.5 50.0 3.0 7.5 7.5 0.5 6.5 2.5 7.0 1.5
Immobilized 1.0 2.0 4.5 85.5 0 1.0 0.5 2.5 2.0 0.5 0.5

Left knee
Weak 0.5 6.0 3.0 0 41.5 19.0 1.5 6.0 6.0 9.5 7.0
Tight 2.5 2.0 4.0 0 23.0 43.0 1.0 6.5 2.0 6.0 10.0
Immobilized 0 1.0 0.5 0.5 2.0 1.5 87.0 1.5 1.0 2.5 2.5

Both knees 1.5 3.5 10.5 1.0 5.5 6.5 1.5 61.0 4.0 3.5 1.5
Right ankle 0.5 2.5 4.0 0 7.0 4.0 0.5 3.0 53.0 12.5 13.0
Left ankle 0.5 1.5 2.5 0.5 8.5 6.0 0.5 1.0 12.0 53.5 13.5
Both ankles 0.5 2.5 2.0 0.5 8.0 4.0 0.5 2.5 7.5 15.5 56.5

Table 9 Mean percentage of correctly-identified lesions obtained by the two-step identification pro-
cedure. The best score in each column is shown by bold.

Natural
Right knee Left knee Both Right Left Both

Mean
Weak Tight Immobilized Weak Tight Immobilized knees ankle ankle ankle

Full-body features 92 61 53 79 37 31 73 66 47 36 32 55.2
Lower-body features 89 38 29 80 21 25 77 48 32 27 26 44.7
Upper-body features 81 38 19 45 13 14 59 43 26 30 23 35.5

Table 8 Mean percentage of correctly-identified lesions obtained by the
two-step identification procedure.

Individual model (%) Universal model (%)
Full-body features 81.1 66.0

the result shown in Tables 1 and 2.
Next, the effect of gait features extracted from the full

body is validated. This effect is validated by comparing the
results obtained using the full-body gait features with those
using the features of a target body joint, which is called
joint features. Results obtained using only joint features
are shown in Table 5, where the target joints were right and
left knees. Specifically, the joint features consist of gait fea-
tures (1), (2), (3), (4), (5), (1′), (2′), (3′), (4′), and (5′) where
(l′) denotes the mean-normalized feature of feature (l), all
of which are described in Sect. 3.2. Comparison between
Tables 4 and 5 reveals the preponderance of the full-body
features over the joint features.

For further analysis between full-body and joint fea-

tures, confusion matrices obtained using gait features of
lower- and upper-body parts are shown in Tables 6 and 7,
respectively. The joint features were used by the one-step
identification procedure. The mean values of the percent-
ages of correctly-identified lesions in Tables 6 and 7 are
74.1% and 62.4%, respectively, while the one computed
by the one-step identification procedure using the full-body
features is 81.1%. From these results, it has been demon-
strated that the full-body features are useful for lesioned-part
identification.

4.3 Experiments Using Limited Variation of Gait Data:
Universal Model

In all experiments shown in Sect. 4.2, a training data for
each subject consists of only this subject’s data; a classi-
fication model was trained individually. For the universal
model that can be used for anybody, a classification model
must be trained by training data of all subjects and applied
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to anybody. To examine the effectiveness of the univer-
sal model, the percentage of correctly-identified lesions was
computed with a leave-one-out cross validation procedure.
The mean percentage among all subjects and all gait mo-
tions was shown in Table 8. The mean percentage of the
universal model, 66%, is much lower than the one com-
puted with individual models, 83.1%. This is a natural con-
sequence because people have their own gait patterns, which
are utilized for gait recognition [29].

4.4 Experiments Using Large-Scale Gait Data over a
Wide-age Range: Universal Model

The dataset used in Sect. 4.2 was augmented with 206 natu-
ral gait motions of elderly people. The universal model was
evaluated again for 10 twenties with a leave-one-out cross
validation procedure, but all the models were trained also
with all the 206 natural gait motions of elderly people. This
was the difference from the experiments shown in Sect. 4.3.

Table 9 shows that the full-body features outperformed
other two local features obtained from upper- and lower-
bodies. While classification using the full-body features is
superior to the local features in the universal model also, the
performance of the universal model is much lower than that
of the individual models; 55.2% vs 83.1%. For practical use,
this classification performance should be insufficient. Since
the effectiveness of the individual model has been demon-
strated in this paper, a prospective solution is that the model
optimized for the individual is produced by domain adapta-
tion [30] from a small amount of data of each user and the
universal model trained by a large number of people.

5. Concluding Remarks

This paper proposed a method using a depth sensor for find-
ing the symptoms of lesions on the lower body. For find-
ing the lesioned part and its degree of lesion, the proposed
method employs a set of gait features representing the mo-
tion of the full body rather than local features around each
body part. Compared with the local features, the effective-
ness of the full-body gait features was demonstrated in ex-
periments; for example, 74.1% by the lower-body features
vs 83.1% by the full-body features using the two-step iden-
tification in the individual models, and 44.7% by the lower-
body vs 55.2% by the full-body in the universal models.

Future work includes improvement of universal models
for more general use. In addition, measurement noise may
disturb correct lesioned-part identification. For example, it
is reported that RMSEs for knee and hip joints in a gait se-
quence are 28.5 degrees and 11.8 degrees, respectively, in
[18]. More comprehensive error analysis was conducted in
[16]. By reducing such error by employing a human motion
prior for pose tracking [31]–[33], it is expected that the iden-
tification performance of the proposed method is improved.
Experiments using gait data with real lesions are also im-
portant for verifying the proposed method in more realistic
scenarios. To this end, the gait data of elderly people whose

motion was significantly different from others might be used
so that such data can be annotated manually by physiother-
apists or specialists for gait diagnosis/rehabilitation.

This study was supported by Yanmar Lab 2112 and
JSPS KAKENHI Grant Number 15H01583.
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