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PAPER

Occluded Appearance Modeling with Sample Weighting for Human
Pose Estimation

Yuki KAWANA†, Nonmember and Norimichi UKITA†∗a), Senior Member

SUMMARY This paper proposes a method for human pose estimation
in still images. The proposed method achieves occlusion-aware appear-
ance modeling. Appearance modeling with less accurate appearance data
is problematic because it adversely affects the entire training process. The
proposed method evaluates the effectiveness of mitigating the influence of
occluded body parts in training sample images. In order to improve oc-
clusion evaluation by a discriminatively-trained model, occlusion images
are synthesized and employed with non-occlusion images for discrimina-
tive modeling. The score of this discriminative model is used for weighting
each sample in the training process. Experimental results demonstrate that
our approach improves the performance of human pose estimation in con-
trast to base models.
key words: human pose estimation, pictorial structure models, occlusion

1. Introduction

Human pose estimation is a task to infer the configuration of
a person’s body parts in an image. The task is a highly chal-
lenging problem due to a wide variety of appearance result-
ing from nonrigid deformation of human body, occlusion,
and a variety of clothing.

We base our approach on the pictorial structure model
(PSM) [1]–[3]. The PSM represents a human body config-
uration as a graphical tree model capturing inter-part spa-
tial relationships such as relative position and orientation,
and decomposes appearance of a human body into local
part templates. It is important to model appearance of each
body part robustly against inter-person difference. For this
purpose, robust feature descriptors such as HOG [4] and
PHOG [5] have been proposed. The feature representation
is much improved by recent advance in convolutional neural
networks [6].

However, it is difficult to represent the all appearance
variation of body parts occluded by other body parts, other
people, or background objects. Since a human body is
highly articulated and a single image only represents a uni-
directional view of the body, many body parts are often oc-
cluded in an image, as shown in Fig. 1 (a) (b) (c). This kind
of occlusion is not handled by appearance modeling in the
PSM, while the appearance features of body parts are not
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Fig. 1 Examples of occlusion. A torso covers an arm in (a). An arm
covers a torso in (b) and (c).

distinctive (e.g., left/right lower and upper arms could be
represented as the similar figures of two parallel lines).

To solve the problem above, this paper proposes a
method for suppressing the bad effect of occluded parts in
appearance learning by measuring the degree of occlusion.
These issues have been researched in previous works such as
[7], [8], but they require annotation data of occluded body
parts for prior learning of an occlusion detector. However,
usually-available datasets have no annotation about whether
or not each part is occluded. Manual annotation of occluded
parts for all training images is a highly expensive option. In
addition, those previous methods [7], [8] do not use a sam-
ple image if this image includes at least one occluded part.
This means that useful training data of other non-occluded
body parts in this image are also not used.

Our approach enhances appearance modeling of a lo-
cal part template by automatically weighting sample images
based on occlusion. The overview of the proposed method
is shown in Fig. 2. The proposed method employs conven-
tional pose-annotated training data with no annotation of oc-
cluded parts (e.g., “Sample images with parts annotation”
in Fig. 2). For sample image weighting based on occlu-
sion, we introduce the occlusion confidence model which
detects possible occlusion on a body part and measures its
degree of occlusion. For robustly measuring the degree of
occlusion, various sorts of sample images for non-occluded
and occluded body parts, which are respectively indicated
by “Body part images without occlusion” and “Body part
images with occlusion” in Fig. 2, are useful. In general
datasets, however, the variation of occluded parts is lim-
ited in contrast to that of non-occluded parts. To resolve
this problem, a large number of occluded body part images
are synthesized from non-occluded ones; “Occlusion image
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Fig. 2 Illustration of our proposed approach. From sample images with
part annotation, part windows are cropped and divided into non-occluded
and occluded parts. These part windows are employed for learning the oc-
clusion confidence model. This model weights each sample image in learn-
ing the pose estimation model. Processes enclosed by a dashed rectangle
are executed for each body part.

synthesis” in Fig. 2.
We examine our approach on benchmark datasets, the

Image Parse [9] and Leeds Sports Pose [10] datasets. Exper-
imental results demonstrate that our approach outperforms
the base methods [1], [11]. While our proposed method im-
proves robustness against occlusion in a learning stage of
each base method, its pose inference process is performed
with no change in our experiments.

In contrast to our earlier work [12], [13], this paper
presents additional experimental results with a larger dataset
(i.e., Leeds Sports Pose [10]) and a pose estimation method
using deep neural networks [11].

2. Related Work

For pose estimation in still images, a graphical model
has been used to learn the distribution of human poses
in recent works [14]–[16]. In the graphical model, each
node and link corresponds to a part and a physical con-
nection between parts. Among all possible models, tree-
based models [17], [18], including pictorial structure mod-
els (PSMs) [2], [19], are widely used because of their abil-
ities to represent a variety of shape structures and to obtain
globally-optimal part locations. Indeed, a variety of objects,
including human bodies, cars, bicycles, horses, etc., are ex-
pressed by the tree-based models [20].

While the PSM consists of appearance and body-
structure components as described in Sect. 3, this paper fo-
cuses on the appearance model. To maintain discriminativ-
ity in appearance, recent advances have proven that discrim-
inative training of part appearance can improve part distin-
guishability [17], [20], [21]. For appearance representation,
a variety of features have been proposed such as image gra-
dient features [22] and segmentation features [23]. In addi-
tion to the appearance of each body part, that of connectiv-
ity of neighboring body parts can be also discriminatively
trained [11], [24]. For utilizing the advantage of discrimi-
native training, training samples must be correctly divided
into positive and negative samples. The positive and nega-
tive samples are each body part and all other images, respec-

tively, in the PSM. For PSM training, selection of the pos-
itive and negative samples can be basically done by using
the body part annotations provided in each training image.
However, if a body part is occluded by other body parts or
background objects, the region of this body part should be
removed from the positive samples. The sample selection
is critical because incorrect selection may lead to bad learn-
ing results as suggested in [20]. The research on effect of
occlusion in appearance modeling has not been conducted,
whereas a problem relating to occlusion at a pose inference
stage has been researched in previous methods [7], [8].

Another approach regarding occlusion is proposed by
Johnson and Everingham in [25]. They use the dataset
which has (incomplete) occlusion annotations where oc-
cluded body parts are not annotated. Their approach dis-
cards a sample in appearance modeling if one or more body
parts are not annotated in a sample due to occlusion.

In this paper, based on the approach in [1], we explic-
itly examine the effect of occlusion in appearance modeling.
In our model we weight a sample containing an occluded
body part in order to mitigate the adverse effect of occlu-
sion. The adverse effect of occlusion is partly suppressed in
appearance modeling proposed in [25]. In [25], training data
including occluded body parts is not used even if other body
parts are visible and can be used for appearance modeling.
The proposed approach is more efficient than [25] in a sense
that we fully utilize all training data, which are made with
high annotation cost.

3. Pictorial Structure Model

This section describes the basis of the PSM [2] used in the
base models [1], [11] of our implementation. A tree-based
model is defined by a set of body parts V and a set of links E
connecting two of the body parts. Given N body parts, hy-
pothesis z = (p1, . . . , pN) specifies the locations of all parts,
where pi represents the pixel location, orientation, and scale
of part i.

The score of hypothesis z in image I is given by a sum
of two scores as follows:

S a(z) + S d(z) (1)

=
∑
i∈V

wi · φ(I, pi) +
∑
i, j∈E

wi j · φd(pi − p j) (2)

= β · ψ(I, z) (3)

β = (w1, . . . , wN , w11, . . . , wNN) (4)

ψ(I, z) = (φ(I, p1), . . . , φ(I, pN),

φd(p1 − p1), . . . , φd(pN − pN)) . (5)

where the first term in score (1) represents the appearance
score and the second term for the deformation score. In
the appearance score, wi represents a filter for body part i
and φ(I, pi) is a feature vector (e.g., HOG descriptor [4])
extracted from pixel location pi in I. In a typical ex-
ample of the deformation score, wi j represents a four di-
mensional vector specifying coefficients of quadratic func-
tion [1]. φd(pi − p j) defines the deformation between body
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parts i and j. By integrating the first and second terms in
(2), the score of hypothesis z can be expressed by the inner
product of β and ψ(I, z) as shown in (3), (4), and (5).

4. Appearance Modeling with Occlusion Confidence

This section introduces our approach of appearance mod-
eling based on measuring the degree of occlusion of each
body part. Our method consists of three tasks below:

Section 4.1 Occlusion confidence modeling, which is
achieved with a set of occluded body part images and a
set of non-occluded ones. This modeling aims to mea-
sure the degree of occlusion of each body part.

Section 4.2 Data synthesis for occluded body part images,
where the goal is to synthesize occluded body part im-
ages from non-occluded ones. The synthesized im-
ages allow us to train the occlusion confidence model
without manually annotating occlusion for thousands
of sample images.

Section 4.3 Weighting samples for appearance modeling,
where a sample image which has more degree of oc-
clusion less effects the learning process.

4.1 Occlusion Confidence Model

We aim to evaluate the probability of body part i being not
occluded. If the local part filter of body part i is applied to
an image region in which body part i is observed with no oc-
clusion, the response value tends to be larger than the value
in the region of occluded body part i. This tendency is ex-
ploited for representing an occlusion confidence model. The
occlusion confidence model derives the degree of occlusion
of a body part based on its appearance. Remember that the
appearance score is denoted by wi · φ(I, pi) in Eq. (2). Let
Pi(o|wi · φ(I, pi)) be a conditional probability that body part
i is not occluded in pi ∈ z of image I when the appearance
score is wi ·φ(I, pi). Pi(o|wi ·φ(I, pi)) is expressed as follows:

Pi(o|wi · φ(I, pi)) =

{
f (a), (O(i) � ∅)
1, otherwise

(6)

f (a) = 1 − 1
1 + exp((a − 0.75)20)

(7)

j ∈ O(i) if
|D(i) ∩ D( j)|
|D(i)| > γ (8)

a =
G(wi · φ(I, pi)|μpos

i ,Σ
pos
i )Pi(o)

G(wi · φ(I, pi)|μneg
i,O(i),Σ

neg
i,O(i))Pi(o)

(9)

• o and o denote that a body part is occluded and is not
occluded, respectively.
• a becomes greater if the probability that body part i is

not occluded is larger.
• f (a) is an arbitrary function to adjust the reliability of

occlusion confidence modeling using appearance cues
(i.e., φ(I, pi) in Eq. (6)). In our experiments, f (a) was
designed as Eq. (7) so that f (a) is almost fixed around

Fig. 3 Function f (a). The horizontal and vertical axes indicate a and
f (a).

Fig. 4 Illustration of D(i), which indicates the region of body part i.

0.5, if a is not sufficiently high. f (a) � 0.5 means that
it is difficult or impossible to decide whether i is visible
or occluded. So, f (a) is just a middle point between 0
(i.e., occluded) and 1 (i.e., visible). When a is high,
f (a) � 1. The curve of f (a) is shown in Fig. 3. f (a)
increases sharply from 0.5 to 1.0 because the appear-
ance score (i.e., wi · φ(I, pi) in (2)) of an occluded body
part increases sharply when the visible region of part
i is above a certain ratio. Any similar-shaped curves
work well, and our f (a) is robust to a change in param-
eters (i.e., 0.75 and 20 in Eq. (2)). While the parameters
were determined based on cross-validation trials using
the training dataset of the Image Parse dataset, they can
be determined depending the dataset.
• O(i) denotes a set of the indices of body parts that over-

lap with body part i. If the overlap between the re-
gions (i.e., pixels) of body parts i and j is greater than
a threshold, γ, body part j is included in O(i). More
specifically, body part j is included in O(i) if inequal-
ity (8) is satisfied. In (8), D(i) and |D(i)| denote the
set of pixels included in the region of body part i and
the number of pixels in D(i), respectively. The graph-
ical idea of (8) is illustrated in Fig. 4. γ = 0.25 in our
experiments.
• G(wi · φ(I, pi)|μpos

i ,Σ
pos
i ) is the Gaussian distribution of

the appearance score of non-occluded body part i. The
mean and variance of the Gaussian distribution are de-
noted by μ

pos
i and Σpos

i , respectively. The Gaussian
distribution for occluded body part i is expressed as
G(wi · φ(I, pi)|μneg

i,O(i),Σ
neg
i,O(i)).

• Let Pi(o) and Pi(o) = 1−Pi(o) be the probability values
of body part i being not occluded and being occluded,
respectively. We assume that body part i is likely to
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Fig. 5 Negative image synthesis for scoring the degree of occlusion. Here, positive and negative
images are those with non-occluded and occluded body parts, respectively. Negative samples are syn-
thesized by overlaying a body part (i.e., body part j in the figure) onto the window of another body part
(i.e., body part i in the figure).

be not occluded if body parts overlapped with i (i.e.,
j ∈ O(i)) have overlaps with less number of other body
parts. We formulate this idea as Eq. (10) that is required
to compute Eq. (9).

Pi(o) =

⎧⎪⎨⎪⎩
|O(i)|

|O(i)|+∑ j∈O(i) |O( j)| |O(i)| � 0

1, otherwise
(10)

4.2 Occluded Sample Data Synthesis

The occlusion confidence model utilizes several stochastic
elements (e.g., prior probability, Pi(o) and Pi(o), and the dis-
tribution of the appearance score, G(wi · φ(I, pi)|μpos

i ,Σ
pos
i )).

Among all, the appearance score, wi · φ(I, pi), is the most
important and primitive information for reliability of the oc-
clusion confidence model. In order to make this score more
reliable, we need more sample images of body parts being
not occluded as positive samples and those being occluded
as negative samples. In contrast to the positive samples, the
negative samples are short on numbers for robust discrimi-
native learning due to the following reasons:

• In general, the number of occluded body parts is fewer
than that of non-occluded body parts as seen in Figs. 1
and 4.
• In contrast to a body part observed with no occlusion,

the appearance of occluded body parts is versatile be-
cause of the variation of occluding body parts.

To augment the negative samples, images of body part i
being occluded by body part j are synthesized. The negative
samples are synthesized so that the region of body part j in
the sample image is cropped and overlaid onto the region of
body part i. Note that the synthesized negative samples are
used only for training wi used in Eq. (9). All other stochastic
elements used in occlusion confidence modeling (e.g., Pi(o),
Pi(o), and G(wi · φ(I, pi)|μpos

i ,Σ
pos
i )) are derived only from

real training samples.
The procedure of synthesizing negative samples is

summarized as follow (Fig. 5):

Step 1 Crop the image window of body part j.
Step 2 Superpixelize the image window of body part j. In

our experiments, superpixelization is achieved by an

Fig. 6 Line segments of body parts in human pose annotation and super-
pixels on the line segments.

off-the-shelf method [26]. Then label each super-
pixel either the foreground (i.e., a body part) or the
background. This labeling is achieved by employ-
ing the body part annotation as described below in
detail.

Step 3 Crop foreground superpixels as a set of RGB pixels.
Step 4 Overlay them to the region of body part i. The posi-

tion and orientation of overlaid body part j are deter-
mined randomly in order to represent various kinds
of occlusions by another person as well as self occlu-
sion. Note that body parts i and j can be extracted
from different images.

The foreground/background labeling process in step 2
is performed based on a probability that each pixel is in-
cluded in the foreground region (denoted by F in what fol-
lows). With the annotation of body parts, a conditional
probability that a pixel is included in F is expressed in the
Bayesian manner as follows:

p(F|x, d) =
p(x, d|F)p(F)

p(x, d)
=

p(x|F)p(d|F)p(F)
p(x, d)

, (11)

where x and d are the properties of the pixel. x denotes the
RGB value of the pixel. Let d be a set of distance values
from the pixel to the line segments of all body parts; the
line segments of body parts are illustrated in Fig. 6. d is the
shortest distance included in d. d is normalized by the size
of the image window of each body part, which is indicated
by a rectangle in Fig. 6. More specifically, d is normalized
so that d = d̂

sw
where d̂ and sw denote the pre-normalized

value of d and the window size, respectively. Let S denote
a set of superpixels each of which is on the line segment
of each body part (i.e., superpixels in the foreground), as
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Table 1 Average number of occluded body parts on each body region. All occluded parts in all
training images (i.e., 100 images in the Image Parse dataset) were counted manually.

Torso Head U.arms L.arms U.legs L.legs
Number of occlusion per each body part 10.75 2 11.75 10.75 9.25 6

shown in Fig. 6. That is, all superpixels in S are assumed
to be in F. p(x|F) and p(d|F) are computed from a mixture
Gaussian distribution over x and d of all pixels included in
S, respectively. We regard p(x, d|F) to be conditionally in-
dependent over F. This is because, on the same body part of
different images, pixels tend to share relatively similar color
distribution, and the distribution of normalized width of a
body part is also consistent. We apply Eq. (11) to all pixels
in a sample image to derive the heat map of per pixel likeli-
hood of being foreground. Then we calculate the mean like-
lihood per superpixel and select superpixels each of whose
mean likelihood is above a threshold as the foreground. In
actual calculation, we use p(F|x, d) ∝ p(x|F)p(d|F) for cal-

culation efficiency by assuming
p(F)

p(x, d)
is constant com-

pared to p(x|F)p(d|F). This assumption is satisfied when (i)
the size of a human body is almost fixed in human-cropped
images and (ii) a color variation in a human body is smaller
than that in background regions.

4.3 Sample Weighting with Occlusion Confidence

Our base models [1] and [11] learn the parameters of the
PSM by a discriminative manner, namely by using the La-
tent SVM [20] and the Structured SVM [27], respectively. In
both methods, the following cost function is minimized with
labeled samples (< I1, y1 >, · · · , < IB, yB >), where ys ∈
{−1, 1} for optimizing a set of parameters, β in Eq. (4):

arg min
β

1
2
‖β‖ +

∑
s

C(Is) max
(
0, 1 − ys fβ(Is)

)
, (12)

where fβ(Is) denotes the score of the SVM with sample im-
age Is. C(Is) is a weighting function for Is. In the base
models [1], [11], C(Is) is constant over all sample images.

In our proposed method, the influence of each sample
image, Is, is adjusted by weighting C(Is). C(Is) is deter-
mined by the occlusion confidence values, Eq. (6), of all
body parts of a target person in Is. In our experiments, the
following weighting function was used:

C(Is) =
1
|V |
∑
i∈V

Pi (o|wi · φ(Is, pi)) (13)

In Eq. (13), the weight is a simple average over the occlusion
confidence values of all body parts. In our sample weight-
ing strategy, a sample having more occluded body parts in-
fluences less in learning. In this strategy, not only the ap-
pearance score but also the deformation score in Eq. (1) are
affected in the learning process. This is justifiable because
occluded body parts are mostly invisible thus the deforma-
tion information from the annotation can be arguably noisy
and less preferable to be used for learning.

Note that our proposed method is identical to the base
methods [1], [11] if C(Is) is constant over all sample images.
C(Is) is constant if γ = 1 as defined in Eqs. (6) and (8).

5. Experimental Results

This section reports the results of our experiments on the
proposed method using the Image Parse dataset [9] and the
Leeds Sports Pose dataset [10]. The Image Parse dataset
contains 305 images with pose annotation in total. First 100
images are for training and the rest of 205 images are for
testing. The Leeds Sports Pose dataset contains 2000 im-
ages with pose annotation in total. First 1000 images are for
training and the rest of 1000 images are for testing.

The effect of our proposed confidence modeling is val-
idated with two base models [1], [11]† for human pose esti-
mation.

First of all, our proposed model is validated with a
base model proposed in [1]. In accordance with this base
model [1], a full-body skeleton model with 26 body parts
were used for covering 10 body regions, which are the torso,
head, two upper arms, two lower arms, two upper legs, and
two lower legs; 2 body parts for the head, 8 for the torso,
and 2 for each of the upper and lower arms and legs. In this
approach, the model parameter β in Eq. (4) was learned in
coordinate descent manner alternating between selection of
the body part locations z = (p0, . . . , pn) which maximizes
β · ψ(I, z) in Eq. (3) and optimizing β given z.

For validating the ability of detecting occlusion, we
manually gave the annotation of occlusion to all body parts
in the Image Parse dataset. The averaged number of occlu-
sion in each body part is shown in Table 1. The number
is averaged over the number of body parts in each body re-
gion††.

The ability of detecting occlusion is evaluated with two
criteria, namely precision and recall, explained in what fol-
lows. In the proposed method, the occlusion confidence
model is required to remove occluded parts as many as pos-
sible for reducing their negative effect in appearance model-
ing. Since occluded parts are regarded as negative samples
in occlusion confidence modeling, the precision rate should
be higher.

Precision =
T P

T P + FP
, (14)

where T P and FP denotes the number of correctly detected
non-occluded body regions and falsely detected occluded

†The codes of these two base models are publicly available.
††For example, in four body parts of the upper arms, 12, 12, 12,

and 11 parts are occluded among all training images, respectively.
So 12+12+12+11

4 = 11.75 is the average number of occluded parts.
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Table 2 Accuracy in occlusion confidence modeling.

Torso Head U.arms L.arms U.legs L.legs mean
Precision 0.79 1.0 0.78 0.70 0.78 0.81 0.79

Recall 0.66 1.0 0.77 0.49 0.70 0.54 0.66

Table 3 Comparison of PCP in the Image Parse dataset. (a) Johnson [25], (b) Base method [1], and
(c) Ours.

Torso Head U.arms L.arms U.legs L.legs mean
(a) Johnson [25] 87.6 76.8 74.7 67.1 67.4 45.9 67.4
(b) Base method [1] 85.4 84.4 70.8 47.8 77.8 71.2 70.5
(c) Ours 87.3 86.3 73.2 55.1 79.0 71.2 73.1

Table 4 Comparison of PCP in Leeds Sports Pose dataset. (a) Base method [1], and (b) Our proposed
method using [1].

Torso Head U.arms L.arms U.legs L.legs mean
(a) Base method [1] 79.3 77.7 60.6 51.2 48.6 32.8 54.3
(b) Ours 79.6 77.8 61.1 51.2 49.4 34.0 54.9

body regions, respectively.
On the other hand, the occlusion confidence model is

also required not to falsely remove non-occluded body parts.
To evaluate whether or not this requirement is fulfilled, the
recall rate of occlusion detection is an important criterion:

Recall =
T P

T P + FN
, (15)

where FN denotes the number of falsely removed non-
occluded body regions.

Here we say an occluded body part is detected if the
probability of the body part being not occluded as in Eq. (6)
is less than one. In the dataset mentioned above, the pre-
cision and recall rates with Eq. (6) were shown in Table 2.
While the recall rate is not high enough yet, the precision
rate is relatively higher. In the trade-off between the preci-
sion and recall rates, the precision should have higher prior-
ity for suppressing the negative impact of occluded parts on
learning part appearance. While efficiency of model learn-
ing is damaged if the recall rate is lower, this problem can
be resolved by augmenting the number of sample images.

As described at the end of Sect. 4.3, γ in Eq. (8)
changes the behavior of the proposed method. The effect of
γ on pose estimation accuracy was tested on the Image Parse
dataset. The accuracy is evaluated with a standard criterion,
namely probability of a correct pose (PCP) criterion with
Buffy implementation [28]† using the person-centric anno-
tation. Figure 9 shows the average PCP of all body regions
obtained by the different values of γ. While the accuracy is
changed smoothly, γ = 0.25 was selected based on Fig. 9
and used for further experiments including those with the
Leeds Sports Pose dataset.

Next, the results of human pose estimation were eval-
uated with PCP and compared between different methods.
The results tested in the Image Parse dataset and the Leeds

†The implemented code is distributed at the author’s web-
site [29].

Sports Pose dataset are shown in Table 3 and Table 4, re-
spectively. In PCP tested with the Image Parse dataset, our
approach gives superior performance to the base method in
most of body parts. This is likely because our approach suc-
cessfully learns appearance model which are less distracted
by the appearance of occluded body parts appearance. This
is especially true in lower and upper arms whose scores have
significantly increased by 7.3% and 2.4% respectively in our
approach. Performance improvement on the arms is likely
because lower and upper arms have a number of occluded
parts, thus our method is especially effective reducing the
negative effect of occlusion. The typical examples of human
poses estimated by our model from the Image Parse dataset
are shown in Fig. 7. In the figure, we can see our model per-
forms better to estimate the locations of body parts than the
base model.

In the Leeds Sports Pose dataset also, our model per-
forms better than the base method in most body parts as
shown in Table 4. The graphical estimated results in the
Leeds Sports Pose dataset are illustrated in Fig. 8.

Comparative experiments were conducted also with an-
other base method using convolutional neural networks for
appearance learning [11]. The implementation details were
equal to the base model [11] as follows. A full-body graph
structure is based on a human body annotation, in which
each body consists of 10 body regions and 14 end points of
the body parts, in the LSP dataset. These end points are con-
nected by 12 midway points. In total, 26 nodes correspond-
ing to these points compose a graph that represents the full
body. As described in Sect. 4.3, the structured SVM [27]
was used for optimizing model parameters.

The results of PCP evaluation are shown in Table 5.
While the performance of this base method [11] is signif-
icantly higher than [1], the proposed method outperforms
the base method [11] again, in particular in the lower limbs.
This property is same with those observed in Tables 3 and
4. Several estimated poses are visualized in Fig. 10.
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Fig. 7 Typical results of our model compared to the base model [1] with the Image Parse dataset. The
results of our model are shown on the left and the base model on the right in the each pair of images. A
caption below each image indicates how many body parts were successfully localized out of all 10 body
regions.

Fig. 8 Typical results of our model compared to the base model [1] with the Leeds Sports Pose dataset.

Table 5 Comparison of PCP in Leeds Sports Pose dataset. (a) Base method using CNN for appear-
ance learning [11] and (b) Our proposed method using [11].

Torso Head U.arms L.arms U.legs L.legs mean
(a) Base method [11] 92.7 87.8 69.2 55.4 82.9 77.0 75.0
(b) Ours 93.5 87.8 70.7 61.2 84.0 79.5 77.2

Fig. 9 Effect of γ on pose estimation accuracy.

Fig. 10 Typical results of our model compared to the base method using
CNN for appearance learning [11] with the Leeds Sports Pose dataset. In
each sample image, the lefthand and righthand images show the results of
our model and the based model [11].

6. Conclusion

We have introduced the model that improves appearance

modeling for the PSM. We show that reducing the effect
of occluded body parts can provide better appearance mod-
eling to improve the performance in human pose estima-
tion. For appearance modeling, our approach is more effi-
cient than the previous work [25] that discards sample im-
ages including occluded body parts. We have shown that
our method leads to superior results than the base meth-
ods [1], [11].

In future work, we would like to drop the false detec-
tion rate in sample image weighting. For example, while
simple averaging in Eq. (13) is used in the current imple-
mentation, another approach that weights body parts de-
pending on their occlusion probability may be useful. The
occlusion confidence model can be also improved, for exam-
ple, by a theoretically-valid function f (a), while f (a) was
determined empirically. While the proposed method was
evaluated with human pose estimation methods using the
PSM, pose-regression and part-heatmap based methods are
also prospective options as their performance is improved
by convolutional neural networks (e.g., [30]–[33]). For the
pose-regression based method also, the proposed method is
applicable for reducing the bad effect of occluded body parts
in appearance learning.

This work was partly supported by JSPS KAKENHI
Grant Number 15H01583.
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