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PAPER

3D Reconstruction with Globally-Optimized Point Selection

Norimichi UKITA†a), Senior Member and Kazuki MATSUDA†, Nonmember

SUMMARY This paper proposes a method for reconstructing accurate
3D surface points. To this end, robust and dense reconstruction with Shape-
from-Silhouettes (SfS) and accurate multiview stereo are integrated. Unlike
gradual shape shrinking and/or bruteforce large space search by existing
space carving approaches, our method obtains 3D points by SfS and stereo
independently, and then selects correct ones from them. The point selection
is achieved in accordance with spatial consistency and smoothness of 3D
point coordinates and normals. The globally optimized points are selected
by graph-cuts. Experimental results with several subjects containing com-
plex shapes demonstrate that our method outperforms existing approaches
and our previous method.
key words: shape reconstruction, shape from silhouettes, multiview stereo,
graph-cuts

1. Introduction

3D reconstruction from multiple views is an important issue
in computer vision. Our method employs two types of 3D
reconstruction techniques, namely shape-from-silhouettes
(SfS) and multiview stereo, which are widely used for
camera-based 3D reconstruction.

In SfS, multiview silhouettes of a target object are pro-
jected to a 3D space, and their intersection is regarded as the
volume of the object, which is called a visual hull. While
SfS is fast, robust, and able to get dense and smooth points,
the visual hull might include false-positives in the concave
regions of the object shape as shown in Figs. 1 and 2.

In multiview stereo, image windows that match be-
tween multiple views are found with photo-consistency in
order to compute the distance to the 3D point of interest. In
principle, every point where multiview matching is estab-
lished can be reconstructed. Difficulty in matching is caused
in shaded, textureless, and uniquely textured regions. This
difficulty results in sparse and incorrect 3D points.

This paper proposes how to integrate the advantages of
the above two schemes. In the proposed approach, 3D points
are selected from the results of the two schemes so that a vi-
sual hull from SfS is partly replaced by a point cloud recon-
structed by multiview stereo. This point selection replaces
false-positive points in the visual hull by true-positive points
in the point cloud of multiview stereo.

Since a lot of existing algorithms gradually refine a

Manuscript received February 27, 2012.
Manuscript revised July 9, 2012.
†The authors are with the Graduate School of Information Sci-

ence, Nara Institute of Science and Technology, Ikoma-shi, 630–
0192 Japan.

a) E-mail: ukita@is.naist.jp
DOI: 10.1587/transinf.E95.D.3069

small range of the surface of the visual hull in an itera-
tive manner, they tend to have local optima in iteration (e.g.
see [1]). While recent advances in optimization techniques
allow us to acquire a globally optimal shape from a whole
large space where the real shape of an observed object pos-
sibly exists, global optimization in the large search space
requires huge computational cost (e.g. around an hour or
more in [3], [11]). Our approach resolves the problems of
these previous methods by point selection only from the vi-
sual hull surface and the stereo point cloud, not from all
possible points in the large space. This is because:

• The stereo point cloud is globally optimized because
multiview stereo reconstructs it from all possible com-
binations of feature points extracted from images.
While the point cloud might be incomplete due to lack
of the feature points on the surface of the observed ob-
ject, reconstruction of a limited number of the feature
points can be finished efficiently.

Observed multiview images SFS
Our previous
method

Our new
method

Fig. 1 Our new result compared with the results of Shape from Silhou-
ette and our previous method [21]. For visualization purpose, a 3D surface
mesh was generated from reconstructed 3D points. Typical differences are
seen in the regions enclosed by rectangles. SfS produced huge error in con-
cave regions, which were occluded by the right arm. A protrusion, which
was generated due to a small number of extraneous 3D points, was re-
mained in the same region by our previous method. To remove those 3D
points by global optimization is the goal of our new method.

Fig. 2 Shape from silhouettes.
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• Incomplete regions of the stereo point cloud are filled
by a part of the visual hull, which can be reconstructed
much faster than other 3D reconstruction techniques.
It should be noted that even global optimization of the
whole space such as [2], [3], [11] cannot reconstruct the
featureless regions.

In practice, our point selection between 3D points re-
constructed by SfS and multiview stereo is achieved us-
ing global optimization by graph-cuts with smoothness con-
straints and penalty distance between visual hull points and
stereo points. As shown in Fig. 1, this globally optimized
point selection outperforms our previous method based on
local point selection with naive thresholding [21].

2. Related Work

2.1 Shape-from-Silhouettes

Figure 2 illustrates a visual hull reconstructed by SfS [4].
Even if the multiview silhouettes of a target object are
extracted correctly, the visual hull might include false-
positives as well as the real shape of the object. The false-
positives are called ghost volumes. While they are reduced
as the number of the cameras grows, it is impossible to re-
move them in the concave regions of the object.

Despite the ghost volumes, SfS is widely used for
shape reconstruction in a studio. This is because SfS can
obtain dense and smooth surface points, and silhouette ex-
traction is easier than stereo point correspondence in an ex-
perimental environment such as a chroma key studio.

Silhouette constraints have the advantage also that they
provide 3D points on occluded surfaces along the silhou-
ettes (e.g. boundaries between the torso and the sleeve in
the lefthand image of Fig. 4).

2.2 Multiview Stereo

Although early works in multiview stereo match all points
independently, recent approaches find the points on the
surface that minimizes a global photo-consistency with
smoothness constraints (e.g. optimized by level sets [12],
[13], and EM [14]). Novel techniques can reconstruct nor-
mals as well as 3D points; for example, [15], [16].

While multiview stereo can reconstruct accurate 3D
positions, it cannot reconstruct textureless regions, which
make point correspondence difficult. This difficulty causes
incorrect and/or incomplete surface reconstruction. 3D
points on occluded surfaces also cannot be reconstructed.

Photo-consistency becomes more powerful with arti-
ficial textures (e.g. chessboard patterns with multiple col-
ors) on a target surface [17], [18]. However, such specially-
colored textures are unavailable in natural scenarios.

To see the typical difference between SfS and multi-
view stereo, the results given by these methods are shown
in Fig. 4, which were obtained from images shown in Fig. 3.
For visualization purpose, the mesh surfaces obtained from

Fig. 3 Images captured from eight viewpoints and used for reconstruct-
ing 3D surfaces shown in Fig. 4.

Fig. 4 Mesh surfaces obtained from a visual hull and a stereo point
cloud, which were reconstructed from multiview images shown in Fig. 3.

the reconstructed 3D points, each of which was obtained
by Poisson surface reconstruction [19], are shown in Fig. 4.
For emphasizing the limitations of each method, specially-
colored clothing was used for robust silhouette extraction
and multiview point matching. While the visual hull pro-
duces the feasible surface with no missing body-regions,
several body-regions (e.g. feet) are missing in the one re-
constructed from the stereo point cloud. This is because no
point correspondence was obtained in these regions. From
the stereo point cloud, on the other hand, thin sleeves are
reconstructed correctly although ghost volumes make the
sleeves thicker than the real shape.

2.3 Space Carving and Its Variations

The most popular approach for refining a visual hull is space
carving [1]. The visual hull, which is an initial shape, is
carved until photo-consistency is satisfied between multi-
ple views. Other constraints such as smoothness can be
also optimized (e.g. using continuous local optimization by
gradient descent [6], discrete global optimization by graph
cuts [7], [8], [10], and continuous global optimization [9]).
Furthermore, bruteforce optimization of a large space within
the visual hull [2], [3], [11] can avoid local optima, which
appear between the visual hull and the real surface.

A series of space carving have the limitations below:

• Gradual carving from a visual hull tends to fall into
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local optima.
• Optimization of the whole large space requires huge

computational cost; around an hour or more.

3. Optimized Selection of 3D Points

Existing approaches in space carving refines surface points
in a visual hull until photo-consistency is satisfied. Photo-
consistency could be satisfied before the reconstructed sur-
face reaches the real surface.

Instead of carving the whole large space inside the
visual hull [3], [11], our previous method [21] reconstructs
surface points by multiview stereo [15] and SfS indepen-
dently, and then combines the segments of the surface points
so that the surface of the visual hull that occludes the stereo
points are carved. The numbers of 3D points evaluated in the
carving process are O(r3) and O(r2), where r denotes the ra-
dius of a target object, in carving the whole visual hull [3],
[11] and carving the surface of the visual hull [21], respec-
tively.

While our previous method carves ghost volumes effi-
ciently, sensitive thresholding in carving might miss-carve
the ghost volumes and/or over-carve the visual hull. A
method proposed in this paper resolves these problems by
globally optimized point selection from the surface points
reconstructed by multiview stereo and SfS.

After introducing a basic algorithm of visual hull carv-
ing in our previous method in Sect. 3.1, Sect. 3.2 and 3.3
describe optimized carving of the visual hull using graph-
cuts and pruning unreliable stereo points, respectively. Our
optimized point selection is achieved with those visual hull
carving and stereo point pruning.

3.1 Local Point Carving with Naive Thresholding

First of all, SfS and multiview stereo are applied to images
independently. Only the surface points of the reconstructed
visual hull are remained as illustrated in Fig. 5.

Then, like ray tracing, each of stereo points (e.g. s1

and s2 in Fig. 6) is projected onto image planes in which the
point is extracted along the ray (e.g. r1,1 and r1,2 in Fig. 6,
where rs,c denotes a ray from s-th stereo point to c-th cam-
era center). The rays are drawn from every stereo point to
camera centers, each of which observes that stereo point; a
stereo point is observed from a camera, if the point is recon-
structed using the image of the camera in multiview stereo.
If the ray hits one or more points in the visual hull (e.g. v1,
v3, and v4 in Fig. 6), these points are carved as ghost vol-
umes. In practice, the bounding box around each point of
the visual hull (e.g. bounding boxes b1 and b4 around v1
and v4 in Fig. 6) is prepared for this intersection test [20].
If the ray crosses the box, its respective visual hull point is
carved.

For this intersection test, the size of the bounding box
is critical. If the size is smaller/larger, visual hull points that
must be carved/remained are remained/carved incorrectly.

Fig. 5 Surface points extraction from voxels in a visual hull.

Fig. 6 Shape carving by testing ray intersection with a bounding box.

The size is determined in accordance with the distance be-
tween the stereo point of interest and its nearest stereo point.

Figure 6 illustrates this intersection test. Given a stereo
point, s1 and its nearest point, s2, the size of the bounding
box for carving along rays drawn from s1 is equal to that of
the cube whose center is s1 and that passes s2. This bound-
ing box is located in every visual hull point. Assume that s1

is reconstructed by cameras 1 and 2, whose projection cen-
ters are c1 and c2, respectively. Since the ray from s1 to c1

(denoted by r1,1) passes through b1, v1 is carved. v2 is also
carved. Similarly, v3 and v4 are also carved because their
bounding boxes are on the way of r1,2.

3.2 Optimized Carving of Visual Hull by Stereo Points

As with our previous method [21] mentioned in Sect. 3.1,
our new method also performs SfS and multiview stereo in-
dependently.

Point carving in our previous method might generate
non-smooth surfaces with holes and extraneous points be-
cause of the following reasons:

Naive size selection of bounding-boxes: A visual hull
point is remained even a little outside a bounding box,
or removed even a little inside a bounding box.

Independent local carving: Each visual hull point is
carved independently of whether or not its neighboring
visual hull points are carved.

To resolve these problems, our new method carves the
surface of the visual hull so that the surface is globally op-
timized in terms of “proximity between a visual hull point
and carving rays” and “smoothness of surface points”. This
optimization is achieved by the following penalty functions
(see Fig. 7):
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Fig. 7 Carving surface points of a visual hull. The surface points are
carved if they occlude points obtained by multiview stereo. Occlusion
check is achieved based on the distance between a surface point of interest
and a ray from a stereo point to a camera; if the surface point is close to the
ray, the point is carved.

Fig. 8 Penalty functions. While d1(p) is a linear function, d2(p) gives
a much larger penalty as dvp gets away from dt . Thin blue and thick red
lines show penalty values if vp is remained (i.e Rp = −1) and removed (i.e.
Rp = 1), respectively.

PD =

Nv∑

p

d(dvp)Rp, (1)

PS =

Nv∑

p

∑

n∈Vp

‖Rp − Rn‖, (2)

where

• Nv denotes the number of the surface points extracted
from the visual hull,
• d(dvp) is a distance function that evaluates the need to

remain p-th surface point, vp, where dvp denotes a dis-
tance from vp to its closest ray (e.g. dv1 is the distance
between v1 to r2,1, dv2 is between v2 to r1,1, and dv3 is
between v3 to r1,1 in Fig. 7),
• Vp includes at most six neighboring surface points (i.e.

upper, lower, left, right, front, and back points)† of vp,
and
• Rp ∈ R = {R1, · · · ,RNv } has −1 or 1. If Rp has −1/1,

p-th surface point is remained/removed. Initially, all Rp

is set to −1.

In our experiments, the following two kinds of distance
functions are tested, namely a L1-norm-based distance func-
tion, d1(p), and a L2-norm-based distance function, d2(p)
(see Fig. 8):

d1(dvp) = min(dvp − dt,C), (3)

d2(dvp) = sgn(dvp − dt) min((dvp − dt)2,C), (4)

where:

• If and only if dvp = dt
r, a penalty value given to vp

is 0 whether vp is removed or remained. dt
r, which is

used for rays drawn from r-th stereo point sr, is de-
termined so that these rays and the ones drawn from
stereo points close to sr carve ghost volumes without
missing. Specifically, given stereo point sr that draws
the ray closest to vp, dt

r is equal to the length between sr

and its closest stereo point.
• C (= d(3dt) in our experiments) is a constant for cutoff.
• sgn(x) is a sign function.

While the penalty function (1) evaluates the proximity
only with the closest ray, it can be evaluated with multi-
ple rays for robust evaluation. The penalty function (1) is
rewritten as follows:

PDM =

Nv∑

p

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑

q∈Qp

w(d(dvp, q))d(dvp, q)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠Rp, (5)

where

• Qp is a set of carving rays that are the top N closest
ones to vp,
• d(dvp, q) denotes the distance between vp and q-th ray

in Qp, and
• w(d(dvp, q)) is a weighting variable for d(dvp, q), where
w(d(dvp, q)) = exp(−d(dvp, q)).

In the formulation described above, Rp is optimized so
that the weighted sum of PDM and PS is minimized:

wDPDM + wS PS , (6)

where wD and wS are weighting variables. These variables
are determined so that wS /wD = C. The weighted sum (6)
is globally minimized by using graph-cuts [22].

3.3 Pruning Stereo Points

Our method employs PMVS [15] as multiview stereo, which
is top-ranked in the Middlebury database [5]. While PMVS
could get better results, it still has the problems below:

• Pixels along an object boundary in images are aggres-
sively used for 3D reconstruction. While this process
increases the number of the 3D points, correct match-
ing with these pixels is difficult because of background
pixels contained in an image window used for match-
ing. Matching error produces inaccurate 3D points.
• Accuracy of the normal gets lower where multiview

stereo reconstructs the point with pixels along an ob-
ject boundary in images.

†Since all surface points are extracted from 3D grid voxels, it
is known that whether any pair of surface points are neighbors in a
3D grid space.
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(a) (b) (c) (d)

Fig. 9 Reconstruction error of multiview stereo [15]. (a) 3D points re-
constructed by multiview stereo. (b) 3D surface reconstructed from (a). A
part of the head was dented. (c) 3D surface reconstructed using (a) by our
method. The dent is still remaining. (d) 3D surface reconstructed by our
method with stereo point pruning described in Sect. 3.3.

Compared with these problematic points, the surface of a
visual hull is reconstructed robustly. Figure 9 (a), (b), and
(c) show examples.

To resolve the problems mentioned above, stereo points
with the following properties are pruned from the result of
multiview stereo if they are near the surface of a visual hull:
1) the point is reconstructed by pixels around the boundary
of a silhouette and 2) the normal is significantly different
from the normal of the nearest visual hull surface. Specifi-
cally, if the distance from a stereo point to its nearest visual
hull surface is shorter than a threshold, ts, and either of the
following conditions is satisfied, the stereo points is pruned:

1. The stereo point is projected onto all image planes used
for reconstructing the point. Then the distance between
the projected pixel and the boundary of a silhouette is
less than a threshold, tb, at least in one of the images.

2. The angle between the normals of the stereo point of
interest and the nearest visual surface is larger than a
threshold, tθ.

In our experiments, ts is the side length of a voxel, tb is
the side length of an image window used for matching in
multiview stereo, and θa = 30 degrees. It should be noted
that two thresholds ts and tb are determined automatically in
accordance with the spatial resolution of reconstruction.

The remaining stereo points are used for optimized
carving of a visual hull, as described in Sect. 3.2. Fig-
ure 9 (d) shows the reconstructed surface from the 3D points
acquired by optimized carving.

4. Experiments

The proposed method was applied to multiview image se-
quences for validating the effectiveness of the method. All
results were obtained from eight cameras. The cameras
were located around a subject. If a camera was located right
above the subject, it could reduce ghost volumes by SfS,
especially those surrounded by arms. But no camera was
located above the subject for verifying the performance of
carving the ghost volumes under severe conditions.

3D surfaces reconstructed using L1-based-norm and
L2-based-norm distance functions are shown in Fig. 10.
While two results were almost same, the L2-based-norm
distance function overcarved the leg (enclosed by a circle in

L1-norm-based L2-norm-based

Fig. 10 Reconstructed surfaces using different distance functions,
namely the L1-norm-based function in expression (3) and the L2-norm-
based function in expression (4).

Fig. 11 Tennis sequence: observed images.

Fig. 12 Tennis sequence: shape from silhouettes.

Fig. 13 Tennis sequence: space carving [2].

Fig. 14 Tennis sequence: our previous method [21].

Fig. 15 Tennis sequence: our method.
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Fig. 16 Exercise sequence: observed images.

Fig. 17 Exercise sequence: shape from silhouettes.

Fig. 18 Exercise sequence: space carving [2].

Fig. 19 Exercise sequence: our previous method [21].

Fig. 20 Exercise sequence: our method.

the figure). In accordance with these results, the L1-based-
norm distance was employed in our experiments, though it
seems that the distance function should be selected depend-
ing on images and/or objects.

Figures 11–35 show observed images and the results of
surface reconstruction from them; playing tennis (Figs. 11–
15), exercising (Figs. 16–20), dancing with loose-fitting
clothing (Figs. 21–25), throwing (Figs. 26–30), and batting
sequences (Figs. 31–35). From each sequence, four sets of
images and reconstructed shapes observed at different mo-
ments are shown.

For comparison, the results of shape-from-silhouettes

Fig. 21 Dance sequence: observed images.

Fig. 22 Dance sequence: shape from silhouettes.

Fig. 23 Dance sequence: space carving [2].

Fig. 24 Dance sequence: our previous method [21].

Fig. 25 Dance sequence: our method.

(Figs. 12, 17, 22, 27, and 32), space carving with graph-
cuts [2] (Figs. 13, 18, 23, 28, and 33), our previous
method [21] (i.e. shape carving without optimized point se-
lection by graph-cuts) (Figs. 14, 19, 24, 29, and 34), and
our new method (Figs. 15, 20, 25, 30, and 35) are shown.
All parameters in SfS, multiview stereo, and surface recon-
struction were same in all methods. The numbers of sur-
face voxels and stereo points were around 50000–70000 and
3000–6000, respectively, at each frame. Note that the num-
ber of nodes in carving with graph-cuts was equal to that of
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Fig. 26 Throwing sequence: observed images.

Fig. 27 Throwing sequence: shape from silhouettes.

Fig. 28 Throwing sequence: space carving [2].

Fig. 29 Throwing sequence: our previous method [21].

Fig. 30 Throwing sequence: our method.

the surface voxels (i.e. 50000–70000).
In our method, the optimized 3D points were acquired

around one minute by Xeon 2.4 GHz: 10 seconds in mul-
tiview stereo, a few seconds in pruning stereo points, and
30–60 seconds in carving using graph-cuts. This compu-
tational cost is significantly smaller than that of global opti-
mization in the whole large space search [2], [3], [11], where
the number of nodes in graph-cuts is upto 20 million [11];
our method was around 200 times faster than [3].

Solid and dotted circles in the figures indicate “error
regions that were correctly carved by one or more of other

Fig. 31 Batting sequence: observed images.

Fig. 32 Batting sequence: shape from silhouettes.

Fig. 33 Batting sequence: space carving [2].

Fig. 34 Batting sequence: our previous method [21].

Fig. 35 Batting sequence: our method.

methods” and “error regions where all methods could not get
correct shapes”, respectively. Errors enclosed by the dotted
circles were observed in severe concave regions surrounded
by the arms. Other errors and properties of the methods are
summarized as follows:

• Shape-from-silhouettes produced large ghost volumes
in all of concave regions.
• Space carving sometimes stopped before reaching a

real surface (e.g. regions between the arms in Fig. 23
and the third image from the left 18) and overcarved a
slim region (e.g. a tennis racket in Fig. 13 and the arm
in the rightmost image in Fig. 33).
• While shape carving reduced ghost volumes rather

than space carving, some small protrusions were re-
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Degree of ghost volumes (i.e. PDM)

Carved and remaining points

Fig. 36 Tennis sequence: A visual hull observed from different two
viewpoints is shown. In upper images (i.e. the degree of ghost volumes),
PDM of each point was higher in order of green, blue, and red. In bottom
images, red voxels were carved while green voxels remained.

mained. These protrusions were caused due to surface
points of a visual hull that could not be removed. In
addition, shape deformation was caused due to 3D ori-
ented points incorrectly reconstructed by PMVS; for
example, the head was overcarved in the second image
from the left in Fig. 14, as with the one in Fig. 9 (b)
and (c).
• In all of the results, our method could get plausible

shapes with less noticeable errors than other methods,
except a small protrusion in the third result from the
left in Fig. 30, which was not seen in the shape recon-
structed by space carving [2] as shown in Fig. 28.

For further intuitive understanding of optimization in
the proposed method, the example of an optimization result
is shown in Fig. 36, where penalty values PDM in a visual
hull (in upper images) and carved and remaining visual hull
points in the optimization result (in bottom images). It can
be seen that the carved points were connected to each other
so that they made clusters, while several isolate points had
larger penalty values, PDM . This effect was acquired by
smoothness term (2).

Reconstruction accuracy was evaluated with two syn-
thesized 3D surfaces (Fig. 37). The two surfaces had the

(a) Surface textured by real images (b) Surface textured by color patches

Fig. 37 Textured 3D surfaces, which are identical in shape, used for
quantitative comparison. Two surfaces observed from different two view-
points are shown.

Table 1 RMS error comparison of five methods, SfS, PMVS [15], space
carving with graph cuts [2], our previous method [21], and the proposed
method.

SfS PMVS [15] SC [2] Previous [21] Proposed

(1) 11.2 13.3 9.7 7.3 6.9
(2) 11.2 3.6 8.0 4.4 4.1

(a) Surface reconstructed from im-
ages capturing the surface tex-
tured by real images (Fig. 37 (a))

(b) Surface reconstructed from im-
ages capturing the surface tex-
tured by color patches (Fig. 37 (b))

Fig. 38 3D surfaces reconstructed by PMVS [15]. Two surfaces ob-
served from different two viewpoints are shown.

same shape generated as follows: i) the initial shape was
generated by the proposed method with eight real cameras
and ii) the initial shape was rectified manually so that it
got close to the real shape. Then the surface was textured
by simple OpenGL functions with two kinds of patterns,
namely (1) captured images used for reconstructing the sur-
face and (2) random color patches, which are useful for win-
dow matching in multiview stereo. These two textured sur-
faces were separately observed from eight viewpoints (in
a simulation environment), whose geometric configuration
relative to the target surface was different from that of the
real eight cameras, in order to capture the multiview images
of each surface. The captured images were then used for
3D reconstruction. The reconstruction accuracy was eval-
uated by a distance from each surface point to its nearest
reconstructed point. Table 1 shows the RMS errors of the
distance. The RMS errors were compared among five meth-
ods. From the table, the following observations can be seen:

(1) For reconstruction of the less-textured surface shown in
Fig. 37 (a), the proposed method outperformed the oth-
ers. It should be noted that PMVS [15] got the worst
result because several body regions were not recon-
structed due to poor textures, as shown in Fig. 38 (a).

(2) With rich textures shown in Fig. 37 (b), PMVS got the
best result as shown in Fig. 38 (b), followed by the
proposed method. This is because several stereo points
were over-pruned in the proposed method.
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As the summary of the above observations, the pro-
posed method is considered to be superior in reconstruct-
ing less-textured surfaces, while multiview stereo can obtain
more accurate results if a target surface has rich textures.
Note that, even if the target surface has rich textures, the
proposed method is comparable to multiview stereo.

5. Concluding Remarks

This paper proposed 3D point reconstruction from multiple
views. The method employs two kinds of point sets re-
constructed by SfS and multiview stereo. For sorting out
these two kinds of the point sets, a two-phased point re-
moval technique is proposed: 1) pruning of stereo points
based on “proximity between their respective pixels and the
object boundary in images” and “irregularity of the point
normals” and 2) globally optimized carving of the surface
of a visual hull by using the stereo points with graph-cuts.

The codes of PMVS [15], Poisson Surface reconstruc-
tion [19], and space carving with graph-cuts [2] were given
by Y. Furukawa, M. Kazhdan, and S. Nobuhara, respec-
tively.
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