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PAPER

Efficient Topological Calibration and Object Tracking with
Distributed Pan-Tilt Cameras

Norimichi UKITA†a), Senior Member, Kunihito TERASHITA†, Nonmember, and Masatsugu KIDODE†, Fellow

SUMMARY We propose a method for calibrating the topology of dis-
tributed pan-tilt cameras (i.e. the structure of routes among and within
FOVs) and its probabilistic model. To observe as many objects as possi-
ble for as long as possible, pan-tilt control is an important issue in auto-
matic calibration as well as in tracking. In a calibration period, each cam-
era should be controlled towards an object that goes through an unreliable
route whose topology is not calibrated yet. This camera control allows us
to efficiently establish the topology model. After the topology model is es-
tablished, the camera should be directed towards the route with the biggest
possibility of object observation. We propose a camera control framework
based on the mixture of the reliability of the estimated routes and the prob-
ability of object observation. This framework is applicable both to camera
calibration and object tracking by adjusting weight variables. Experiments
demonstrate the efficiency of our camera control scheme for establishing
the camera topology model and tracking objects as long as possible.
key words: topology of fields of view, object tracking, pan-tilt cameras,
efficient camera control

1. Introduction

Object tracking is one of the fundamental problems in
recent computer vision research. In particular, tracking
among widely distributed cameras has become a popular re-
search issue. If the fields of view (FOVs) of the cameras
are overlapped and their extrinsic parameters are known,
object tracking can be simplified by analyzing consisten-
cies in 3D positions of the observed objects (e.g. using
fixed cameras [1]–[4], omnidirectional cameras [5], and ac-
tive cameras [6]–[9]). The extrinsic parameters of the dis-
tributed cameras can be obtained from the observation re-
sults of moving objects; for example, calibration of synchro-
nized [10] and asynchronized [11] cameras, and improving
the initial calibration results [12]. For all of these calibration
methods, the cameras must be positioned so that each object
moves through the FOVs of the cameras without going out-
side the FOVs. That is, the FOVs of the cameras must be
overlapped. The assumption that the FOVs are overlapped
makes it practically impossible to employ a number of cam-
eras for observing wider areas.

Accordingly, camera configuration without overlap-
ping FOVs, namely with blind spots, is necessary for wide-
area surveillance. In this challenging problem, the topol-
ogy of the FOVs and its probabilistic information (e.g. pres-
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ence of a route, transit times, and object transit probabili-
ties between FOVs) can improve object identification; see
[13], [14], for example. Previously, the camera topology
was given manually [13], [14]. Novel algorithms, however,
provide us the camera topology automatically. Automatic
calibration is desired because as the observation area grows
and the number of cameras increases, the topology becomes
drastically more complex. In [15], the camera topology is
estimated from the results of object tracking among and
within FOVs. However, object tracking between isolated
FOVs only based on image cues (e.g. face/object recogni-
tion) is very difficult. For reliable identification among the
FOVs, in [16], it is assumed that only one object moves in
an environment. Otherwise, the trajectory of a moving land-
mark that is easily tracked (e.g. LED) [17] can be obtained
even if other objects exist, or robust identification between
isolated FOVs can be achieved also by employing informa-
tion only of easy-identifiable objects as proposed in [18].
With these approaches, however, object transit probabilities
between FOVs cannot be estimated because it can be ac-
quired only from a number of real object trajectories. On the
other hand, [19] and [20] acquire the probabilistic-topology
of FOVs from a large amount of real object data, which is
represented only by first and last detection results in each
image; no tracking among isolated cameras is needed.

One of the next steps in calibrating widely distributed
cameras is efficient utilization of pan-tilt cameras instead of
fixed cameras. As proposed in [21], object tracking with
pan-tilt cameras is crucial for efficient high-resolution obser-
vation. Similar to tracking with fixed cameras, the camera
topology of the pan-tilt cameras is useful for object identi-
fication. This paper 1) shows that probabilistic topological
calibration of pan-tilt cameras can be achieved by the same
way as that of fixed cameras and 2) proposes a camera con-
trol scheme for efficient calibration. We also show that the
camera control for efficient calibration can be used also for
efficient object tracking with pan-tilt cameras.

2. Probabilistic Topological Camera Calibration

As defined in [20], our topology model of cameras is de-
fined by the routes of moving objects. The route topol-
ogy model is represented by a set of points of entrance and
exit in FOVs. For simplicity, entrance and exit events are
denoted by IN and OUT events, respectively. Two points
observed at temporally consecutive events (i.e. IN-then-IN,
IN-then-OUT, OUT-then-IN, and OUT-then-IN events) of
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Fig. 1 True-positive route detection by vector quantization and thresh-
olding. Small circles and lines between them indicate IN and OUT posi-
tions and their pairs, each of which connects the beginning and end points,
respectively.

the same moving object compose a route. The earlier of the
two points is called a beginning point. The other is called
an end point. More specifically, (1) each route is defined
only by its beginning and end points that are represented by
2D image coordinates, (2) routes are categorized into those
within a FOV (e.g. “Inside route” in Fig. 1) and those in
blind spots such as outside FOVs and behind obstacles (e.g.
“Blind route” in Fig. 1), and (3) object trajectories between
the beginning and end points (e.g. straight or curve trajec-
tories) are not represented by the route information. The
data observed at IN and OUT events (i.e. image coordinates
in the observed image of each camera and the observation
time) are called IN data and OUT data, respectively. IN
data and OUT data are collectively called IN/OUT data; a
single “IN/OUT data” means an IN data or an OUT data,
and a set of “IN/OUT data” means a mixture of IN data and
OUT data.

Unlike accurate 3D reconstruction, complete camera
synchronization using synchronization signals is not have
to be achieved in the proposed method; target positions (de-
noted by P(C) in the observed image of camera C) can be
compared among the cameras even if the positions are cap-
tured at slightly different moments (e.g. in our experiments,
the camera captured images 1 sec intervals). In distributed
cameras, however, time-stamp synchronization is required
for comparing the multiview images that have the closest
time-stamps. In our experiments, the internal clocks of all
computers connected to the cameras were synchronized by
NTP [22].

The basic algorithm for probabilistic topological cali-
bration [20] is as follows:

Step1 For finding pairs of IN/OUT data, each of which po-
tentially consists of the beginning and end points of a
route, IN/OUT data are paired with each other.

• A new IN data is paired with other IN and OUT
data, and a new OUT data is also paired with other
IN and OUT data.
• However, two IN/OUT data observed at quite dif-

ferent moments must not be temporally consecu-
tive data of a moving object. Therefore, each new
IN/OUT data is paired with other IN/OUT data,
excepting those have been observed Tmax sec† or
more before the new data is detected.
• This pairing is executed among FOVs as well as

within FOVs for finding both inside and blind
routes.

Each pair is classified to a set, SB,E , where B and E de-
note the cameras in which the beginning and end points
are observed, respectively. In the example shown in
Fig. 1, each IN/OUT data is depicted by a circle. A line
between two circles mean a pair of IN/OUT data. All
the pairs between cameras C1 and C2 are classified to
SC1,C2 = SC1,C2

1 + SC1,C2
2 + SC1,C2

3 ,
Step2 Let {V1, · · · ,VNB,E } be a set of vectors, where r-th

pair’s Vv = (xB
v , y

B
v , x

E
v , y

E
v , tv) denotes a 5D vector com-

prising the image coordinates of the beginning and end
points and the transit time between them. NB,E denotes
the total number of the pairs in SB,E . Elements in each
vector are normalized between 0 and 1. xB

v , y
B
v , x

E
v , y

E
v

are normalized with the size of an image, and tv is nor-
malized with Tmax.

Step3 {V1, · · · ,VNB,E } are divided into several subsets, SB,E
i

(e.g. SC1,C2
1 ,SC1,C2

2 ,SC1,C2
3 in Fig. 1), based on similar-

ity; LBG algorithm [24] is used.
Step4 The number of the vectors in each subset is counted.

Then its mean and standard variation of all subsets (de-
noted by μn andσn) are computed. If the number is less
than (μn − 2.5σn)††, this subset is regarded as a set of
false-positive pairs (e.g. SC1,C2

2 in Fig. 1), each of which
consists of a temporally inconsecutive IN/OUT data of
different moving objects, and then removed.

Step5 Each remaining subset corresponds to one route. In
each route (denoted by r-th route), the mean and vari-
ance of xB

v , y
B
v , x

E
v , y

E
v , tv and the number of the pairs of

IN/OUT data, NB,E , are computed. The mean (x, y) co-
ordinates of the beginning and end points are denoted
by µB

r and µE
r , respectively, and their covariance matri-

ces are denoted by ΣB
r and ΣE

r , respectively. The mean
and variance of the transit time are denoted by μt

r and
(σt

r)
2, respectively.

Using these statistical data, the following two kinds
of probabilistic values are computed in the following
steps:

• Prp(PB(CB), PE(CE)): Probability that an object
is detected in PE(CE) after it is last observed in
PB(CB).

• Prt(Tr): Probability that an object spends Tr =

T E − T B going through
−−−−−−−−−−−−−−−→
PB(CB) · PE(CE), where

T B and T E denote the time when the object was
observed in PB(CB) and PE(CE), respectively.

Step6 Let R·,E = R·,E1 , · · · ,R·,EN ·,E be all routes with the end
point in CE , where N ·,E is the number of these routes.
The probability that the end point of r-th route, R·,Er , is

†Tmax should determined so that the transit time of every ex-
isting route is less than Tmax. In our experiments, Tmax was deter-
mined by hand so that it was longish.
††While the threshold was determined by hand, it is not a sensi-

tive one. Actually the finally obtained routes did not change in our
experiments even if the threshold was (μn−2.0σn) and (μn−3.0σn).
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PE(CE) is calculated by substituting µE
r and ΣE

r of R·,Er

and PE(CE) for the equation of the Gaussian below:

PrE(P;µ,Σ)=
1

2π|Σ| 12 exp
(
(P−µ)TΣ−1(P−µ)

)
(1)

Let S be the total sum of PrE(P;µ,Σ) multiplied by the
number of pairs, namely,

S =
N ·,E∑
r=1

PrE(PE(CE);µE
r ,Σ

E
r )Nvr,

where Nvr denotes the number of pairs classified into
r-th route. Then,

(
PrE(PE(CE);µE

r ,Σ
E
r )Nvr

)
/S can be

considered to be the probability that the end point of
route R·,Er is regarded as the position of new detection
at PE(CE) (denoted by PrN(PE(CE),R·,Er )).

Step7 Let RB,E = RB,E
1 , · · · ,RB,E

NB,E be a subset of R·,E , which
has the beginning point at the FOV of CB. The prob-
ability that the beginning point of RB,E

j is PB(CB) (this

probability is denoted by PrE(PB(CB);µB
j ,Σ

B
j )) is cal-

culated by Eq. (1).

Step8 The total sum of PrE(PB(CB);µB
j ,Σ

B
j ) multiplied by

PrN(PE(CE),R·,Er ) of the same route is the probability,
Prp, that an object was lastly observed at PB(CB) be-
fore it is newly detected at PE(CE):

Prp(PB(CB), PE(CE))

=

NB,E∑
x=1

PrN(PE(CE),R·,Ex )PrE(PB(CB);µB
j ,Σ

B
j )

Step9 Prt, which denotes the probability that an object
spends Tr for crossing route r, is also calculated by the
Gaussian equation:

Prt(Tr) =
1√

2πσt
r

exp

(
− (Tr − μt

r)
2

2(σt
r)2

)
, (2)

where μt
r and (σt

r)
2 denote the mean and variance of

the transit time of r-th route, respectively, as described
before.

Step10 Prp(PB(CB), PE(CE))Prt(Tr) is considered to be the
probability that the object is detected in PE(CE) after it
leaves for route r from PE(CE) and the transit time is
Tr.

3. Panoramic Image for Efficient FOV Representation

The topology of fixed cameras is determined for a set of
FOVs in [19], [20]. With pan-tilt cameras, it is possible to
prepare the camera topology for FOVs corresponding to sev-
eral pan tilt angles in each camera as shown in Fig. 2 (a), in
which each pan-tilt angle is regarded as a virtual FOV. In
this virtual FOV configuration, the number of the FOVs is
increased in contrast to the number of the real cameras. In-
creasing the FOVs results in increasing false-positive pairs

(a) Multiple pan-tilt images (b) Panoramic image

Fig. 2 Camera topology in pan-tilt cameras. Arrows indicate routes.
Dotted arrows indicate routes between the pan-tilt images of a camera.

Fig. 3 Predefined pan-tilt angles for a panoramic image. A1, · · · , A6 in-
dicate six partial images.

of IN/OUT data, as proved in [20]. Increasing the false-
positive pairs makes removing them (i.e. Step4 in Sect. 2)
more difficult. Because the method described in Sect. 2
removes them by assuming that they are fewer than true-
positive pairs corresponding to real routes.

In our method, therefore, images captured from all pan-
tilt angles of a camera are stitched into one panoramic im-
age. The image captured from each pan-tilt angle is called a
partial image. With the panorama generation algorithm pro-
posed in [23], a seamless panoramic image is obtained from
images observed in any pan-tilt angles. With this panoramic
image, only one image representation in each camera is
needed for estimating the topology of pan-tilt cameras in
the same way as [19], [20] as illustrated in Fig. 2 (b).

Our method controls each pan-tilt camera towards sev-
eral predefined angles for synthesizing the panoramic im-
age. That is, the camera is controlled with a stop-and-go
manner (not smooth panning and tilting). In the example
shown in Fig. 3, six partial images (A1, · · · , A6) are used. For
monitoring all scenes observable from a pan-tilt camera, its
panoramic image must be synthesized from partial images
with no gap among them. The neighboring partial images
must overlap because the gap between the partial images
cannot be observed at any time. This is not desired for mon-
itoring a wider scene. The stop-and-go camera control only
with the predefined angles gives us two advantages.

The first advantage is robust tracking inside the FOV of
the panoramic image. Compared with object tracking while
smoothly moving the pan-tilt angle, tracking in a fixed an-
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gle (i.e. tracking with a atop-and-go manner) is easier. As
described later, this tracking is required both for topological
calibration and tracking with the calibration results.

The second advantage is easy removal of false-positive
IN/OUT data in the calibration process. The false-positive
IN/OUT data is a kind of ghost IN/OUT data, which should
not be detected in the panoramic image. In each partial
image, IN/OUT data (e.g. P2 in Fig. 3) are detected in its
border region when objects enter and exit the partial im-
age. These IN/OUT data are not obtained if a fixed wider-
FOV camera observes the whole scene (e.g. A1 + A2 + A3 +

A4 + A5 + A6 in Fig. 3) with no pan-tilt rotation. In the
panoramic image representation, therefore, these IN/OUT
data are false-positive. Most true-positive IN/OUT data,
which should be detected by the fixed wider-FOV camera,
are detected in the border region of the panoramic image
(e.g. P1 in Fig. 3). But true-positive IN/OUT data might
be detected also inside the panoramic image. For example,
true-positive IN/OUT data are detected if there is an obsta-
cle in the FOV of this camera (e.g. P3 in Fig. 3).

To remove only the false-positive IN/OUT data, con-
sistency between neighboring partial images are evaluated.
Figure 4 shows how to discriminate between true-positive
and false-positive IN/OUT data. See Fig. 4 (a). If P1 is de-
tected in the border region of A1 when an object enters or
exits A1, P1 is projected onto the panoramic image. In the
same region of the panoramic image, no data is projected
from A2. This is because neither of the border and obsta-
cles exist in the corresponding region of A2. In this case,
P1 in A1 is regarded as a false-positive IN/OUT data. For
this verification of false-positive data, exact correspondence
between temporally successive IN/OUT data in the neigh-
boring partial images (e.g. P1 and P2) is not required. Sim-
ilarly, P2 detected in the border of A2 is also regarded as a
false-positive IN/OUT data.

On the other hand, if IN/OUT data detected in the
neighboring partial images are projected onto the same re-
gion of the panoramic image as depicted by P3 and P4 in

(a) Smaller pan-tilt angle between neighboring partial images

(b) Larger pan-tilt angle between neighboring partial images

Fig. 4 Overlap between IN/OUT data detected in neighboring partial im-
ages. A1 and A2 are neighboring images. “P1 and P2” and “P3 and P4” are
false-positive and true-positive IN/OUT data detected in these images, re-
spectively.

Fig. 4 (a), the IN/OUT data are regarded as true-positive.
In order to gain the two advantages, the width of the

overlap between the neighboring partial images is crucial:

• If the overlap is smaller, the camera should change its
pan-tilt angle soon when its target gets into the overlap.
In undesired cases (e.g. when the target turns over and
gets back), the camera might lose the target.
• If the width of the overlap between the neighbors is

small, false-positive data detected in the neighbors are
mixed as shown in the right of Fig. 4 (b). This results
in difficulty in removing the false-positive data.

To robustly track the target and remove the false-positive
IN/OUT data, the overlap between the neighboring partial
images should be larger. In the larger overlap, the above
two advantages can be obtained as follows:

• The pan-tilt angle is controlled when the target is near
the center of the overlap. In the next angle, the tar-
get can be observed in the overlap despite the unknown
movement of the target (e.g. even if the target suddenly
turns over), if the pan-tilt speed is fast†.
• Since the overlap is large, IN/OUT data detected in the

borders of different partial images (i.e. P1 and P2 in
Fig. 4 (a)) are away from each other. The long distance
between P1 and P2 allows us to discriminate between
them easily.

In our experiments, the width of the overlap was determined
to be the maximum horizontal/vertical velocity of objects
observed around the image border (i.e. the distance that the
object travels between the camera capturing interval, de-
noted by dis, 1 sec in our experiments). With this condition,
(1) a moving object stays in the overlapping region while
the camera changes its angle and (2) IN/OUT data detected
in the borders of the neighboring partial images are around
dis away from each other.

4. Camera Control Strategy for Efficient Trajectory
Acquisition

Even if an object is within the panoramic image of a pan-
tilt camera, it fails to observe the object that is outside the
current partial image. To avoid this problem, efficient cam-
era control that allows us to obtain IN/OUT data as much as
possible is required. In our method, this camera control is
achieved based on the following three functions:

• Function-1: Search of new objects
• Function-2: Tracking in a panoramic image
• Function-3: Tracking through blind routes

In what follows, these three functions are introduced
(Sect. 4.1, 4.2, and 4.3) and then a control scheme of

†All pan-tilt cameras that have been used by the authors are
fast enough for tracking between neighboring partial images; any
pan-tilt camera takes less than 0.5 sec, which is less than a captur-
ing interval (i.e. 1 sec), for changing the angle to the neighboring
partial image.
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the pan-tilt cameras with these functions is described in
Sect. 4.4.

4.1 Function-1: Search of New Objects

If no object and OUT data is currently detected by camera
Cc and cameras each of which has a route(s) with Cc, the
pan-tilt angle of Cc is directed towards where a new object
is likely to appear. The possibility of object detection in each
partial image, Ai, is computed from the number of IN/OUT
data detected in Ai. Then Ai is observed at the following
interval so that the interval is proportional to the number of
IN/OUT data plus a minimum duration, D0:

di = (D − ND0)
NO

i∑N
i=1 NO

i

+ D0, (3)

where D denotes the total duration for observing all partial
images through one cycle, and NO

i is the number of IN/OUT
data obtained in Ai, except that di = D0 at an initial state
(i.e. when no IN/OUT data is obtained).

4.2 Function-2: Tracking in a Panoramic Image

If any object is currently observed by a camera, this camera
can track it by controlling the pan-tilt angles in order to de-
tect its OUT data. Notice that only predefined pan-tilt angles
shown in Fig. 3 are acceptable also for this tracking. A large
number of successful methods have been proposed for ob-
ject detection and tracking within a FOV (e.g. robust detec-
tion under non-stationary scenes [25] and occlusion-robust
tracking [26]), unlike tracking among isolated FOVs.

4.3 Function-3: Tracking through Blind Routes

Not only for tracking with the camera topology but also
for efficiently obtaining IN/OUT data for topological cali-
bration, object transit probability estimated from the proba-
bilistic camera topology is useful. The transit probability of
object o that travels through route r is estimated as defined
in [20] (i.e. Step 10 in Sect. 2). At each moment, the point
in which function Prp(PB(CB), PE(CE))Prt(Tr) = Pr(o, r)
has the maximum value is regarded as the end point of
route r in which object o is most likely to appear. In or-
der to use this function for predicting the transit probabil-
ity, PB(CB), PE(CE), and Tr are regarded as the position
where o is lastly detected, the mean position of the end
point of route r from CB, and the transit time after o is
lastly detected in PB(CB). If CB connects to multiple routes,
Prp(PB(CB), PE(CE))Prt(Tr) is computed for each route.

4.4 Camera Control by Object Observability and Route
Uncertainty

Our objective in the calibration period is to efficiently ob-
tain IN/OUT data that is useful for improving the reliabil-
ity of the calibration. In the calibration period, the useful

IN/OUT data are detected in the beginning/end points of un-
certain routes. The uncertainty of the route is determined
by the number of IN/OUT data detected in the route; the
uncertainty is decreased as the number of the IN/OUT data
increases. After the uncertainty is decreased, namely in the
tracking period, the cameras should observe as many objects
as possible for as long as possible.

In both of the calibration and tracking periods, if no
object and recent OUT data is not detected in camera Cc

and cameras each of which has a route(s) with Cc, Cc is
controlled based on function-1.

On the other hand, when one or more objects are mov-
ing through the routes of Cc, one of the objects is selected
as a target. Cc is then controlled so that the selected one is
observed. Our method selects the target based on the un-
certainty of each route and the observation probability of
IN/OUT data. This is because more IN/OUT data should
be detected in uncertain routes and the camera should be di-
rected towards the beginning/end point of the route in which
any object is most likely to appear.

The normalized score of the uncertainty of each route
is expressed as follows:

U(r) =
ur

max
, (4)

ur =
(σxB

r )2 + (σy
B

r )2 + (σxE

r )2 + (σy
E

r )2 + (σt
r)

2

Nvr
, (5)

where max denotes the maximum ur during the calibration
period. (σxB

r )2, (σy
B

r )2, (σxE

r )2, (σy
E

r )2, (σt
r)

2 are variance val-
ues of xB

r , y
B
r , x

E
r , y

E
r , tr

†, which are the components of a 5D
vector Vr, in route r; see steps 2 and 5 in Sect. 2.

The observation probabilities are computed for all
possible routes of every detected object. The probabil-
ity of a previously detected object, denoted by o, mov-
ing through a route, denoted by r, is computed using
collected IN/OUT data based on function-3: Pr(o, r) =
Prp(PB(CB), PE(CE))Prt(Tr). On the other hand, the obser-
vation probability of each object currently being detected is
set to be a constant value.

The pan-tilt camera Cc is controlled at each moment to-
wards the route having the maximum value of the following
weighted sum of Pr(o, r) and U(r):

S (o, r) = wpPr(o, r) + wuU(r). (6)

wp and wu are adjusted depending on the uncertainty of the
obtained probabilistic topology. During the calibration pe-
riod, wp and wu should be low and high, respectively. In the
tracking period, on the other hand, wp and wu should be high
and low, respectively.

The method switches from the calibration period to the
tracking period in accordance with the uncertainty of the
routes, U(r). In our method, the method switches to the
tracking period when U(r) of every route becomes above

†Namely, “(σxB

r )2, (σy
B

r )2” and “(σxE

r )2, (σy
E

r )2” are “1st-row-
1st-column and 2nd-row-2nd-column” elements of ΣB

r and ΣE
r , re-

spectively.



UKITA et al.: EFFICIENT TOPOLOGICAL CALIBRATION AND OBJECT TRACKING WITH DISTRIBUTED PAN-TILT CAMERAS
631

Fig. 5 Temporal history of camera control. Left: temporal histories of
S (o, r) in camera C2, Right: The locations of cameras and objects in an
observed scene.

a threshold. The threshold should be determined depend-
ing on the task. For example, the threshold should be lower
if tracking through popular routes, whose uncertainty be-
comes soon lower, is important. In all of our experiments,
the threshold was U(r) = 0.05. The threshold was deter-
mined by preliminary experiments as follows. In each cam-
era configuration, 10 sets of IN-OUT data were obtained,
and each set was analyzed by our method separately. Then
in all the sets, U(r) = 0.05 could get routes whose number
was ±10% of the mean of those of all the sets.

Note that S (o, r) is changed with time because Pr(o, r)
is determined depending on the difference between the cur-
rent time and the time when object o is last detected. Let
S (omax, rmax) be the maximum at time t. If S (omax, rmax) is
lower than a threshold, the camera is controlled for search
based on function-1. If object omax is not observed currently,
the camera is controlled towards the end point of route r
based on function-3. If object omax is observed currently
(i.e. omax is moving an inside route), the camera tracks it
based on function-2.

Figure 5 shows an example. Objects o1 and o2 have
left the FOV of C1 while object o3, which has left the FOV
of C2 at time t4, is currently moving an inside route, r4, in
the FOV of C2 at time t0. The lefthand graph indicates the
temporal histories of S (o, r) in possible object trajectories.
As shown in this graph, C2 is controlled towards r1, r2, r3,
and o3 during time periods t0-t1, t1-t2, t2-t3, and t3-t4. Later
the camera is controlled for search because no S (o, r) has
a value that is above a threshold. The same camera control
manner is applied in every camera at every time.

5. Experiments

We conducted comparative experiments to demonstrate ef-
ficiency of our proposed method. Both for calibration and
tracking, two methods were evaluated: our proposed method
and a method using simple search described in 4.1 and intra-
FOV visual tracking described in 4.2. To evaluate the results
of different methods in the same situation in each trial, 3D
simulation environments were used.

First of all, two camera configurations in a small block
environment shown in Fig. 6 and 7 were calibrated. Con-
figuration (b) was more complex than configuration (a). For
example, 1) P1 in C1 connected to multiple positions, P2 and
P3, in C2, 2) P4 in C3 connected to multiple cameras, P5 in
C2 and P6 in C4, and 3) C3 had a blind route due to an obsta-
cle. In the simulation environments, each object was repre-

Fig. 6 Camera configuration (a). Left: bird view of the 3D simulation
environment and routes between the cameras (inside routes are not illus-
trated for simplification). Right: panoramic images in cameras C1, C2, C3,
and C4.

Fig. 7 Camera configuration (b). See the caption of Fig. 6 for details.

sented by a 3D point that moved on a floor. When the point
was first and last observed by a camera, the observed point
was regarded as IN and OUT data, respectively. Objects
entered the block environment from one of E1, · · · , E5 ran-
domly, selected its direction randomly at each corner, and
left from one of E1, · · · , E5. Object trajectories and veloci-
ties were fluctuated with Gaussian noise. The mean velocity
was determined so that an object moved from E2 to E5 in 12
seconds. At each moment, two objects were simultaneously
moving in the environment. With the above manners, three
trials, each of whose IN/OUT dataset was analyzed by two
methods, were performed.

The resolution of each camera was assumed to be
640 × 480 pixel. The ranges of its pan-tilt angles were ±30◦
and ±15◦, respectively. The predefined pan-tilt angles were
12 directions (4 pan angles × 3 tilt angles). The cameras
captured images at 1 sec intervals. The minimum duration
for object search (i.e. D0 in Formula (3)) was five seconds.
The weight variables in Formula (6) were determined as fol-
lows: wp = 0.2 and wu = 0.8 for the calibration period and
wp = 1.0 and wu = 0.0 for the tracking period.

With the above experimental environments, the topol-
ogy calibration was evaluated in terms of 1) the effectiveness
of removing false-positive IN/OUT data described in Sect. 3
and 2) efficiency of our proposed camera control.

1) removing false-positive IN/OUT data: Figure 8
shows one of the estimated routes in camera configuration
(a) by our method without/with false-positive removal. In
the figure, small dots and arrows between them indicate
IN/OUT data and estimated routes, respectively. The ar-
rows are grouped into true-positive (indicated by solid ar-
rows) and false-positive (indicated by dotted arrows) routes.
Discrimination between true-positive and false-positive was
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Without false-positive removal With false-positive removal

Fig. 8 Topology calibration results without/with false-positive IN/OUT
data removal in camera configuration (a). Each image is a panoramic image
captured from a pan-tilt camera. All arrows indicate estimated routes. Solid
and dotted arrows indicate true-positive routes and false-positive routes,
respectively.

Fig. 9 Temporal histories of the uncertainty scores in camera configu-
ration (a). Solid lines: simple search for 12 partial images, Dotted lines:
panoramic images, Broken lines: proposed method for 12 partial images.

done manually. Four false-positive routes were obtained
by the method without removing false-positive IN/OUT
data. For example, route F1 was the false-positive be-
cause its right-side end point was far from the border of the
panoramic image (i.e. actual end point of F1). The end point
of F1 was shifted towards the inside of the panoramic image
due to false-positive IN/OUT data detected in the border of
a partial image. By comparing two results in Fig. 8, it can
be seen that false-positive routes were not detected by our
method.

2) camera control: Figure 9 shows the temporal his-
tories of the mean value of normalized uncertainty scores
(U(r) in Formula (4)) in each trial in camera configura-
tion (a). Blue and red lines indicate the scores obtained
by camera control without the camera topology, which is
equal to the initial search scheme of our method described
in Sect. 4.1, and our proposed method. The horizontal axis
indicates a transit time in the simulation environment (not a
computational time). Our method could obtain a sufficient
amount of IN/OUT data, which got less than U(r) = 0.05 in
all routes, 1.4 times as fast as the simple search scheme. For
comparison, the scores obtained by IN/OUT data acquisi-
tion in one panoramic image at each camera are also shown
by green lines in the figure. Since all IN/OUT data can
be obtained in the panoramic image, the uncertainty score
decreased most rapidly. It can be seen that the proposed
method got closer to data acquisition in the panoramic im-
age.

For evaluating the effect of the number of partial im-

Fig. 10 Temporal histories of the uncertainty scores of our method in
camera configuration (a). Thick line: 35 partial images, Solid line: 20 par-
tial images, Broken line: 12 partial images, Dotted line: panoramic images.

30 min 60 min 90 min

30 min 60 min 90 min

Fig. 11 Temporal histories of estimated routes. Arrows indicate the esti-
mated routes. Upper: configuration (a), Lower: configuration (b).

ages on efficient camera control, experiments with differ-
ent numbers of partial images (1, 12, 20, and 35 images)
were also done in camera configuration (a). While the size
of the panoramic image was not changed in these experi-
ments, each partial image shrank as the number of the par-
tial images grew. Figure 10 shows the temporal histories of
the mean value of normalized uncertainty scores. Roughly
speaking, it can be seen that the score decreased drastically
between around 0.6 and 0.5 even if the number of the partial
images was larger. That might be happened because col-
lected IN/OUT data was then able to sometimes estimate
correct probabilistic information about routes.

Figure 11 shows the histories of routes estimated by our
method in camera configurations (a) and (b) in one of the
trials. It can be seen that the estimated routes were refined
over time. In (b), however, several false-positive and false-
negative routes remained around the obstacle in the FOV of
C3. The magnified images around the obstacle were shown
in Fig. 12. These errors were caused because tracking within
a panoramic image was disturbed by the obstacle. Assume
that an object is moving from left to right in the panoramic
image of C3. Its OUT data might be detected at the left
boundary of the obstacle. After this OUT data detection, the
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Ideal routes False-positive estimated routes

Fig. 12 False-positive routes in C3 of camera configuration (b).

Fig. 13 Bird view of the huge simulation environment.

pan-tilt angle of C3 was controlled based on function-1 or
function-3. Unfortunately, based on function-1 (i.e. search)
in a raster scan manner, the pan-tilt angle was directed to-
wards the top left of the panoramic image. Therefore, the
route between the obstacle could not be detected in our ex-
periments. To solve this problem, camera control in a search
scheme should be determined not only in a routine manner
but also in a random manner as similar to Monte Carlo sim-
ulated annealing.

Next, a number of cameras in a huge environment were
calibrated. The huge environment was prepared by connect-
ing the small block environments with camera configuration
(a). The outline of the huge environment is illustrated in
Fig. 13. Specifically, this huge environment was generated
by connecting E1, E2, E3, and E4 of camera configuration
(a) to E3, E4, E1, and E2 of camera configuration (b), re-
spectively, and vice versa, recursively. A block with camera
configuration (a) was located in the center and then seven
small blocks with camera configuration (b) were connected
to each of E1, E2, E3, and E4 of the center block; in total
116 cameras in 29 small blocks. Figure 14 shows the tem-
poral histories of uncertainty scores. Similar to the scores in
camera configuration (a), our method could speed up camera
topology calibration in contrast to the simple search scheme.

In the tracking period, the percentage of detected

Fig. 14 Temporal histories of the uncertainty scores in the huge envi-
ronment. Solid lines: simple search with partial images, Dotted lines:
panoramic images, Broken lines: proposed method.

Fig. 15 View from above of the scene and image examples.

IN/OUT data was evaluated. Total IN/OUT data was known
from the simulation data. In our proposed method, the mean
percentages of three trials were 97% and 85% in camera
configurations (a) and (b), respectively. Without the proba-
bilistic camera topology, on the other hand, the percentages
were 58% and 51%.

The comparative experiments were conducted with real
cameras. To evaluate the results of different methods in the
same object trajectories, first of all, a long image sequence
was captured by each camera. Then each real image was
regarded as a panoramic image and images segmented from
the real image were regarded as its partial images. In the
experiments, six partial images (3 pan divisions × 2 tilt di-
visions) were prepared. Assume that only one partial image
could be observed at each moment.

Figure 15 shows the experimental environment and the
examples of the images captured by cameras. Twelve 640 ×
480 pixel cameras were used. Object detection was imple-
mented with a simplified version of [25]. All detected pixels
were then grouped into each object region based on connec-
tivity of the detected pixels. The centroid of the connected
pixels is regarded as the position of the object. For tracking
in the partial image, each detected object region is identified
with object regions in the previous frame based on proxim-
ity.

• When an object was first detected in any partial im-
age, the object was tracked. If tracking was successful
during three frames or more, an IN data was generated
from the object data detected first.
• When tracking an object was unsuccessful for three

frames (i.e. no object was detected at time t, t − 1, and
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Fig. 16 Results of object detection and tracking. These images are the
partial images of C1 (right-upper partial images). Rectangles indicate de-
tected objects. The centroids of objects O1 and O2 were regarded as the
positions of IN/OUT data. Such varying positions are merged into the end
point of a route (i.e. the mean position, µB

r or µE
r , of route r). The end point

is indicated by an orange circle in the figure.

(a) Results of simple search without the camera topology

(b) Results of our proposed method with the camera topology

(c) Results of fixed camera calibration with panoramic images

Fig. 17 Examples of detected routes. Arrows and ellipses indicate the
detected routes and their beginning and end points, respectively. Only route
r could not be detected in the proposed method.

t−2 near the object detected at t−3), an OUT data was
generated from the object data detected at t − 3.

Figure 16 shows the examples of detected objects
around the border of a partial image. The centroids of de-
tected object regions O1 and O2 were regarded as the po-
sitions of IN/OUT data. For reference, the mean position
of the end point of a route, which was established by O1,
O2, and IN/OUT data detected near them, is depicted by
an orange circle in the figure. The positions of O1, O2,
and the end point of the route in the panoramic image were
(442, 18), (484, 20), and (449, 21), respectively.

Figure 17 (a) and (b) show the results of the topologi-
cal calibration. For comparison, the result obtained by [20]
from the original-size images are also shown in Fig. 17 (c) in
which all routes were verified by hand. Note that the routes

Fig. 18 Probability of object detection, Pr(o, r).

that are close to each other are merged in the figures for
viewability. With and without the camera topology model,
387 and 603 minutes were needed until the calibration was
finished, respectively.

To demonstrate probabilistic information obtained by
our method, examples of Pr(o, r) are shown in Fig. 18 (a).
The graph shows the temporal histories of Pr(o, r1) and
Pr(o, r2) when object o left P in C2; r1, r2, and P are de-
picted in Fig. 18 (b). The statistics of r1 and r2 were as
follows: mean and variance values of (xB

1 , y
B
1 , x

E
1 , y

E
1 , t1)

were (408, 39, 212, 187, 2.4), and (272, 167, 296, 116, 0.30),
respectively. Those of (xB

2 , y
B
2 , x

E
2 , y

E
2 , t2) were (356, 44, 393,

26, 4.4) and (351, 205, 259, 289, 1.84). It can be seen that
Pr(o, r1) and Pr(o, r2) were determined so that their peaks
were located around the transit time measured by hand (in-
dicated by T m

1 and T m
2 in Fig. 18).

In the tracking period, the percentage of the duration
of object observation was evaluated. 100% objects were
detected from the sequences of the original-size observed
images. Object tracking was achieved for 300 minutes. In
our proposed method with the camera topology model, the
mean percentage of three trials was 91%. Without the proba-
bilistic camera topology, on the other hand, the percentages
was 67%. From these results, it can be demonstrated that
our proposed method could improve both accuracy and effi-
ciency compared with the simple search and tracking meth-
ods without the camera topology model.

6. Concluding Remarks

We proposed a method for estimating the topology of dis-
tributed pan-tilt cameras and its probabilistic model. To ob-
serve as many objects as possible for as long as possible,
pan-tilt control is an important issue not only in a tracking
period but also in a topology estimation period for efficient
modeling. Our method controls the pan-tilt cameras so that
every route has reliable probabilistic data and objects are
detected as many as possible.

Future work includes the following aspects:

• Appearance similarity for object identification between
different FOVs [27].
• Experiments with real pan-tilt cameras.
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