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PAPER

Part-Segment Features with Optimized Shape Priors for
Articulated Pose Estimation

Norimichi UKITA†a), Senior Member

SUMMARY We propose part-segment (PS) features for estimating an
articulated pose in still images. The PS feature evaluates the image likeli-
hood of each body part (e.g. head, torso, and arms) robustly to background
clutter and nuisance textures on the body. While general gradient features
(e.g. HOG) might include many nuisance responses, the PS feature rep-
resents only the region of the body part by iterative segmentation while
updating the shape prior of each part. In contrast to similar segmentation
features, part segmentation is improved by part-specific shape priors that
are optimized by training images with fully-automatically obtained seeds.
The shape priors are modeled efficiently based on clustering for fast extrac-
tion of PS features. The PS feature is fused complementarily with gradient
features using discriminative training and adaptive weighting for robust and
accurate evaluation of part similarity. Comparative experiments with public
datasets demonstrate improvement in pose estimation by the PS features.
key words: human pose, part segmentation, pictorial structure models

1. Introduction

Deformable part models [1] and feature classifiers (e.g. dis-
criminative classifier [2]) have improved articulated pose es-
timation. As well as models and classifiers, image features
are crucial. While most articulated pose estimation methods
employ gradient features such as HOG [3], they include not
only useful responses along a body boundary but also nui-
sance responses caused by background clutter and textures
on a target body.

This work focuses on how to extract only the boundary
of each part based on a shape prior. The boundary is rep-
resented by a part-segment (PS) feature (Fig. 1 (b)). For the
PS feature, initial segments are obtained by binary seeds.
Their distribution is automatically determined by training
images depending on the part. While the seed distribution
gives a weak shape prior, a more reliable dense shape prior
is acquired from initial segments in training images.

Our contribution is threefold: 1) initial shape priors are
extracted by segmentation using part-specific foreground
(FG) and background (BG) seeds trained automatically
(Sect. 4.1), 2) the shape priors are refined and clustered for
correctly and efficiently computing PS features (Sect. 4.2),
and 3) adaptive weighting of the PS features with domain
adaptation improves their discriminativity (Sect. 4.3). Com-
pared with our earlier work [4], efficiency in feature com-
putation is improved and the proposed feature is evaluated
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Fig. 1 (a) All parts, shown by rectangle windows, are configured in their
proper locations. (b) Segmentation-based feature of a part, the left-upper
leg in this example shown in “Window”. Pixels that are more probable to
be included in a part of interest are depicted by darker colors in “Dense
shape prior” and “PS feature”. While the proposed PS feature is extracted
by a part-specific dense shape prior, correct segmentation is difficult with a
weak shape prior (i.e. “Sparse seeds”).

with more data in detail.

2. Related Work

To suppress nuisance responses, multimodal cues includ-
ing segments are useful (e.g. color distributions, superpixels,
and their scales in [13], edges and color-segmented regions
in [14], and smooth connectivity between parts [15]). Seg-
ments can be obtained by image segmentation, such as nor-
malized cuts [16], globalPb [17], and superpixelization [18].
However, it is not easy to extract each part as one segment
because the part might be over-segmented due to textures
and shades on a human body. Such over-segmentation can
be suppressed by the shape prior of each part. Table 1 sum-
marizes several properties of methods for/using segmenta-
tion.

As the prior, the configuration of roughly detected parts
is useful (e.g. upper-body [9] and whole-body [19], [20] de-
tection). In ObjCut [5] and [6], [8], [9], one or more parts
are detected initially using features with no segmentation.
Depending on the configuration of the detected parts, seeds
for segmenting all parts in a human body are distributed. It
is, however, difficult to distribute the seeds sufficiently to all
the parts by using only the limited detected parts.

While several methods [11], [12] achieve part segmen-
tation and detection independently (“DI” in Table 1), each
of these methods has functional defects. Segmentation
cues [12] require manually-predefined sparse seeds, while
our method acquires the probabilistic pixelwise shape prior;
this difference is shown in “SP” and “PS-SP” in Table 1.
CHOG [11] also needs a set of manually-given seeds so that
those suitable for segmentation are selected by using train-
ing images. In addition, CHOG provides only sparse seeds
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Table 1 Comparison of body/part segmentation methods. Each column shows whether or not the
methods exhibit each property. No init: no pose initialization is required. DT: feature is discriminatively
trained. Weight: each pixel/cell in a segment extracted from a test image has its weight (i.e. probability
to be FG). DI: detection and segmentation are achieved independently. SP: segmentation is achieved
using a shape prior. PS-SP: part-specific shape prior is given. AS: seeds are given fully automatically.
NR: the method has a mechanism for coping with noise in segmentation.

No init DT Weight DI SP PS-SP AS NR

(a) ObjCut [5] Y
(b) Parse [6], Better appearance [7] Y
(c) Segmentation [8] Y Y
(d) Progressive search [9]
(e) PoseCut [10] Y Y
(f) CHOG [11] Y Y Y Y Y
(g) Segmentation cues [12] Y Y Y
(h) PS feature (Proposed) Y Y Y Y Y Y Y Y

(i.e. a pair of FG and BG pixels). The proposed PS feature
is extracted by part-specific dense shape priors optimized by
automatically-given seeds and training images; these advan-
tages are shown in “AS” and “PS-SP” in Table 1.

Noise in segmentation is a critical issue. To suppress
this problem, the PS feature enhances its robustness by do-
main adaptation, while binning and histogramming are ap-
plied to a segmentation image in CHOG [11] as with HOG.

3. Pose Estimation Using Pictorial Structure Models

An articulated model is represented by a tree model with a
set of nodes, V, and a set of links each of which connects
two nodes, E, as presented in [1]. Each node and link re-
spectively corresponds to a part and a connection between
parts. The pose parameters of the node are optimized for
pose estimation by maximizing the score function below:

T (P) =
∑

i∈V
S i(pi) +

∑

i, j∈E
Pi, j(pi, pj), (1)

where pi and P denote the pose parameters of i-th part and
its set of all parts (P = {pi|∀i ∈ V}).

S i(pi) is a similarity score of i-th part at pi. In this
paper, S i(pi) is a sum of filter responses using HOG [3] and
the PS feature, which are extracted from each window:

S i(pi) =
[
FT

i ,G
T
i

] [
φ(I, pi), ϕ(I, pi, i)

]T (2)

where Fi and φ(I, pi) denote the filter of i-th part and the
HOG extracted at pi in image I, respectively, and Gi and
ϕ(I, pi, i) denote those of the PS feature.

Pi, j(pi, pj) is a spring-based score between i-th and j-th
parts, which has a greater value if the configuration of pi and
pj is highly probable. In our model, Pi, j(pi, pj) is expressed
by the following form [21]:

Pi, j(pi, pj) = w
T
i, j · [dx

i, j, d
x2

i, j, d
y
i, j, d

y2

i, j]
T (3)

wi, j is a weight parameter. dx
i, j and dyi, j denote xi − x j and

yi − y j, respectively, where (xi, yi) ∈ pi and (x j, y j) ∈ pj are
the locations of i-th and j-th parts.

In what follows, how to learn Gi and extract ϕ(I, pi, i)
is described.

4. Training of Part-Segment Features

4.1 Initial Shape Prior Obtained by Part Segmentation Us-
ing FG and BG Seeds

The shape prior of each part is obtained from its segments in
all training images. For extracting the segment in each im-
age, the image is segmented by general image segmentation.
For efficiency and accuracy, SLIC superpixelization [18] is
used. Figures 2 (a), (b), and (c) show an image, its seg-
mented image, and part windows whose locations are given
in annotation data, respectively. Since the region of a part
might be over-segmented, these segments must be clustered
into those of the part of interest and others.

4.1.1 Fully-Automatic Configuration of Seeds

Clustering over-segmented segments is achieved initially
with seeds automatically given by using training data. Train-
ing data consists of images and pose annotations. The pose
of each part is given as a pair of end-points of a part line
(Fig. 3 (a)). In each part’s window, the initial sample col-
ors of FG are collected from segments that cross the part
line. Then the distance between the color of each pixel in
the window and its nearest neighbor color in the collected
FG samples is computed. The color distances are binarized
by [22] for dividing the pixel colors into FG (i.e. colors with
a smaller distance) and BG, as shown in Fig. 3 (b). If a seg-
ment has 50% or more FG color pixels, it is clustered into
FG. This clustering is executed in all parts’ windows in all
training images. After the window sizes are normalized, the
rate of FG in all training images is computed in each pixel
with respect to each part. Pixels with the top/bottom γ% FG
rate are extracted as FG/BG seeds.

4.1.2 Segment Clustering with Seeds

The seeds provide a weak shape prior. With the advantage
of spatially-distributed binary seeds having a variety of color
samples, segment clustering is re-executed as follows:

1. Segments each of which has only FG/BG seeds are
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Fig. 2 Initial part segmentation in training. (a) Input image. (b) Correct windows of two parts (i.e.
torso and left lower-leg) superimposed on a segmented image. (c) Cropped windows of the torso and
the left lower-leg. (d) FG and BG seeds, indicated by red and blue circles, respectively. (e) Binary
segmentation using the seeds. (f) Parts’ windows cropped from (a). (g) Another input image. (h-upper)
Torso segment extracted from (g). (h-lower) Desired torso segment in (g).

Fig. 3 Learning the configuration of seeds.

clustered into FG/BG segments. If either of FG or BG
segment is not found, this window is removed from the
following processes.

2. Each of remaining segments is clustered into FG or BG
based on its nearest neighbor colors with FG and BG
segments.

3. The FG and BG segments are regarded as an initial PS
feature (denoted by ϕ̂i, j for i-th part in j-th training im-
age) where FG/BG pixels have 1/0 as pixel values.

Binary PS features of all training images are averaged
in each part. The mean is regarded as the initial shape prior
of the part (denoted by ϕ̄i for i-th part): ϕ̄i =

(∑Np

j ϕ̂i, j

)
/Np,

where Np denotes the number of training images.
By comparing obtained binary PS features (Fig. 2 (e),

where white and black depict FG and BG pixels, respec-
tively) with their respective images (Fig. 2 (f)), it seems seg-
mentation is reasonable. However, a PS feature might be
sometimes extracted unsuccessfully, as shown in Fig. 2 (h-
upper); its successful example is (h-lower).

4.2 Shape Prior Refinement

4.2.1 Shape Prior Refinement with Updating PS Features

For refining the shape prior, a PS feature of i-th part in each
training image is updated with ϕ̄i:

1. The mean color of a segment having FG/BG seeds in
each window is stored as the sample color of FG/BG.

2. By comparing ϕ̄i with segments in the window, the
mean of pixel values of ϕ̄i in s-th segment is regarded
as the probability that the segment is FG. This proba-
bility is denoted by Pf (s).

3. The nearest neighbor color of the mean color in the
s-th segment is found from the sample colors of FG.
The color distance from the nearest neighbor color is
denoted by l f (s). lb(s) for BG is also computed.

4. By deeming exp(−l f (s)) and exp(−lb(s)) to be image
likelihoods, the Bayes’ theorem gives the following
probabilities:

P( f |s) ∝ exp(−l f (s))Pf (s)

P(b|s) ∝ exp(−lb(s))(1 − Pf (s))

In an updated PS feature, pixels in s-th segment have
the pixel value below: P( f |s)/ (P( f |s) + P(b|s)).

Finally, the mean of the updated PS features of all train-
ing images is regarded as a refined dense shape prior, ϕ̄i.

The process mentioned above can be repeated based on
the EM algorithm, where observed data is the mean colors
of segments, latent data is their clusters (i.e. foreground or
background), and unknown parameters are ϕ̄i. The expecta-
tion and maximization steps are segment feature extraction
in each image and shape prior acquisition by averaging, re-
spectively. To avoid overfitting, the above mentioned pro-
cess is repeated two times.

4.2.2 Clustering Dense Shape Priors

PS features are extracted for all parts because they are part-
specific. Since this is time-consuming, shape priors are clus-
tered based on their similarity for reducing PS features ex-
tracted in a window; if p-th and q-th parts share the shape
prior, they also have the same PS feature. This is reasonable
because, at least, left and right symmetric parts can share
their shape priors. The mean of shape priors in each cluster
is regarded as a shape prior of parts in that cluster.
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Fig. 4 (a-*) and (b-*): Windows of the torso. (c-*): Window placed in
the legs. (*-1): RGB images. (*-2): PS features obtained with the shape
prior of the torso.

In our experiments, the computational cost of the pro-
posed method in inference can be reduced by 42% by clus-
tering of the shape priors.

4.3 Discriminative Training of Adaptively-Weighted Gra-
dient and Segment Features

Discriminative training [2], [21] optimizes the model param-
eters in score (1), namely Fi and Gi in (2) and wi, j in (3). In
this training, optimization of the weights between gradient
and PS features is imposed in Fi and Gi. If robustness in
feature extraction is comparable between gradient and PS
features, this weighting is effective. To see the robustness,
examples of extracted features are shown in Fig. 4. From
windows (a-1), (b-1), and (c-1), PS features with respect to
the torso were extracted. From these examples, we can see
the following observations: (i) if windows are located prop-
erly with respect to a part of interest, PS features capture
sometimes ideal responses as shown in (a-2), but bad re-
sponses like (b-2) are possibly obtained and (ii) a PS feature
can accidentally have a response that matches different parts
as shown in (c-2), where a PS feature obtained from the re-
gion of the legs is similar to the shape of the torso. These
observations reveal unrobustness of PS features.

To suppress bad effects due to unrobust PS features,
an additional weight is given to a PS feature depending on
its confidence. The confidence value C(ϕ(I, pi, i), i) of PS
feature ϕ(I, pi, i) is determined by the subtraction between
ϕ(I, pi, i) and the shape prior of i-th part, ϕ̄i:

C(ϕ(I, pi, i), i) = exp(−||ϕ(I, pi, i) − ϕ̄i||)
The next issue is how to use the confidence values of

the PS features in the discriminative training framework. An
easy way might be that each part is clustered with respect
to the confidence values and trained independently. This
independent training have the following disadvantages:

Poor training: The amount of training data in each cluster
is decreased.

Inefficient training: Even if PS features are differently
confident, they have similar responses in some pixels.
Independent training with no correlation among these
responses is inefficient.

For efficient training while partially sharing responses be-
tween ideal and other PS features, we train their appearance
filters with domain adaptation by redundantly-concatenated
features [23]. The feature vector,

[
φ(I, pi), ϕ(I, pi, i)

]T , is

changed to either of the followings depending on the con-
fidence value of the PS feature:
[
φ(I, pi), ϕ1, ϕ2, ϕ3

]T
=
[
φ(I, pi), ϕ(I, pi, i), ϕ(I, pi, i), 0

]T ,
if C(ϕ(I, pi, i), i) < C′ (4)[

φ(I, pi), ϕ1, ϕ2, ϕ3
]T
=
[
φ(I, pi), ϕ(I, pi, i), 0, ϕ(I, pi, i)

]T ,
if C′ ≤ C(ϕ(I, pi, i), i) (5)

C(ϕ(I, pi, i), i) is clustered into two classes by threshold C′.
Given the number of the classes†, C′ was determined by K-
means clustering of C(ϕ(I, pi, i), i) of PS features obtained
from all training images; C′ coincides with the middle point
between the means of two neighboring clusters. With the
above feature vectors (4) and (5), appearance score (2) is
rewritten:

S i(pi) =
[
FT

i ,G
T
i,1,G

T
i,2,G

T
i,3

] [
φ(I, pi), ϕ1, ϕ2, ϕ3

]T (6)

5. Inference with Part-Segment Features

In pose inference, PS features are extracted from all possi-
ble windows in a test image for optimizing score (1). The
PS features are extracted by steps 1–4 described in Sect. 4.2.
Using the PS features, the appearance score (6) with con-
catenated features defined by Eqs. (4) and (5) are computed
for score (1).

In a tree-based model, the globally optimized pose pa-
rameters, P̂, having the max score of (1) can be acquired
efficiently by dynamic programming. In addition, distance
transform [1] is applicable to fast message passing in dy-
namic programming.

6. Experiments

6.1 Human Body Model

In our implementation, a human body is represented by a
tree model with a mixture of non-oriented structures pro-
posed by Yang and Ramanan [21], [25]. In this model, each
part i has its x and y location and scale parameter s as its pa-
rameters. Instead of a numerical parameter θ for orientation,
the samples of i-th part are clustered depending on the rel-
ative location of i with respect to its parent part. The ID of
each cluster is called a type. For robustness to in-plane rota-
tion and foreshortening of body parts, this base model [25]
divides physically-rigid parts (e.g. limbs) into smaller parts.
As with the base model, 26 and 18 parts were used for the
full-body and upper-body models in our implementation; 2
for the head, 8 for the torso, 8 for the arms, and 8 for the
legs.

For efficient representation of shape priors, left and
right symmetric parts share their shape prior, as described
in Sect. 4.2.2. To this end, left-side parts were flipped hori-
zontally. In total, 14 and 10 shape priors were used.

†The number of classes, which was determined empirically in
our experiments, can be determined in accordance with the distri-
bution of confidence values (e.g. using Dirichlet processes [24]).
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6.2 Datasets

We tested the proposed PS features with BUFFY stick-
men [9], IP [6], and LSP [26] datasets. Each dataset con-
sists of images for training and evaluation. The numbers
of images in the BUFFY stickmen [9], IP [6], and LSP [26]
datasets are 748 (472 for training and 276 for evaluation),
305 (100 for training and 205 for evaluation), and 2000
(1000 for training and 1000 for evaluation). All images
were selected so that a variety of people and clothing are
observed. Negative samples for discriminative training were
given from 1218 background images in the INRIA Person
dataset [3].

In accordance with [25], results were evaluated as fol-
lows. From annotation data of IP [6] and LSP [26], 10 line
segments localizing body parts were extracted as ground-
truth, while 6 line segments from BUFFY [9]. The former
consists of the full body, and the latter the upper body. On
the end points of the line segments, parts of the articulated
model are located, while other parts are placed on the mid
point of the segments. In total, 26 and 18 parts were respec-
tively used for the full body and the upper body.

6.3 Effects of Parameters

The PS feature has several parameters below:

• The number of superpixels for image segmentation (de-
noted by α)
• The normalized window size of a shape prior (denoted

by β)
• The rate of pixels of FG and BG seeds (denoted by γ)

Their effects were evaluated with the IP dataset. In the fol-
lowing experiments showing the effect of each parameter,
the other two parameters had their finally-selected values
(i.e. α = 200, β = 11, and γ = 0.1).

The results of pose estimation were measured quan-
titatively by the percentage of correctly localized parts
(PCP). The PCP measure was implemented with the code in
the BUFFY dataset [9] using the strictest interpretation de-
scribed in [25]. In this measure, only a single pose detected
with the maximum score is evaluated in each test image.
Each body part in this detected pose is considered correct
if both of its endpoints lie within 50% of the length of the
ground-truth segment from their annotated location.

As well as PCP, the computational cost is evaluated.
In what follows, the computational cost is represented by
the ratio to the one of the base model [25], which is around
between two and five seconds.

6.3.1 Superpixels

Figure 5 shows the effects of the number of superpixels.
From Fig. 5 (a), which shows the relationship between PCP
and the number of superpixels, it can be seen that the num-
ber of superpixels has less impact on PCP and parame-

Fig. 5 Effects of the number of superpixels for computing PS features.

Fig. 6 Effects of the window size of a shape prior. The horizontal axis of
each graph is the pixel length of each side of a squared window.

Fig. 7 Effects of γ for the configurations of FG and BG seeds.

ter selection is not sensitive, while a small peak is ob-
served around 300 superpixels. This peak is observed be-
cause too few/many superpixels result in insufficient/over-
segmentation. While PCP was saturated as the superpixels
increases, the computational cost became higher as shown
in Fig. 5 (b), where the mean of total computational costs
for pose estimation is shown.

Based on the observations mentioned above, the num-
ber of superpixels was determined to be 200 for trade-off be-
tween accuracy and computational cost. Note that a constant
number of superpixels works fine in experiments because all
images in the datasets were size-normalized so that the size
of an observed person is normalized.

6.3.2 Window Size of a Shape Prior

PCP was almost saturated in 11 (i.e. 11 × 11 window size)
as shown in Fig. 6 (a), while a much smaller window cannot
represent the shape of each part and a much larger window
produces a noisy shape prior. Figure 6 (b) shows that the
computational cost was not changed depending on the win-
dow size. This is apparent because window-size normal-
ization is not computationally dominant in contrast to other
steps (e.g. segment clustering in a window). From the re-
sults of PCP, the window size was determined to be 11× 11.

6.3.3 Rate of Seeds

The effects of γ are shown in Fig. 7. With increasing γ, the
seeds grow in number. As shown in Fig. 7 (a), γ has very
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Table 2 BUFFY stickmen dataset: Comparative results of PCP. (a,b,c) related work, (d) our initial
binary feature extracted only by seeds, (e) our feature without shape prior refinement, (f) our feature
without domain adaptation, and (g) our proposed PS feature.

Model Head Torso Upper-arms Lower-arms Total

(a) Adaptive pose priors [27] 100 100 91.1 65.7 85.9
(b) Cascaded models [28] 96.2 100 95.3 63.0 85.5
(c) Mixture of parts [25] 99.2 98.8 97.8 68.6 88.5
(d) Ours by binary feature (by seeds) 99.3 98.9 97.4 68.8 88.4
(e) Ours without shape prior refinement (by non-refined shape prior) 99.3 98.9 97.4 68.8 88.4
(f) Ours without adaptation (by shape prior refinement) 99.3 99.3 98.2 70.3 89.3
(g) Ours (full model) 99.3 99.3 98.2 70.3 89.3

Table 3 IP dataset: Comparative results of PCP. (a) multiple pose models with training pose data
clustering. (b) combining discriminative appearance and segmentation cues [12]. Methods (c), (d), (e),
(f), and (g) are introduced in Table 2.

Model Head Torso U-legs L-legs U-arms L-arms Total

(a) Pose clustering [26] 76.1 85.4 73.4 65.4 64.7 46.9 66.2
(b) Segmentation cues [12] 68.8 77.6 61.5 54.9 53.2 39.3 56.4
(c) Mixture of parts [25] 99.0 96.1 85.9 79.0 79.0 53.4 79.0
(d) Ours by binary feature (by seeds) 99.0 96.1 87.3 78.5 79.5 52.7 79.1
(e) Ours without shape prior refinement (by non-refined shape prior) 99.0 97.0 88.8 79.5 86.3 55.1 81.5
(f) Ours without adaptation (with shape prior refinement) 99.0 97.6 88.8 79.5 85.9 56.1 82.0
(g) Ours (full model) 99.0 97.6 89.8 80.5 87.3 56.1 82.4

Table 4 LSP dataset: Comparative results of PCP. (a) pictorial structures with poselets [29].
(b) model with inaccurate annotations [30]. Methods (c), (d), (e), (f), and (g) are introduced in Table 2.

Model Head Torso U-legs L-legs U-arms L-arms Total

(a) Poselet PS [29] 87.5 78.1 75.7 68.0 54.2 33.9 62.9
(b) Learning from inaccurate annotation [30] 88.1 74.6 74.5 66.5 53.7 37.5 62.7
(c) Mixture of parts [25] 84.1 77.1 69.5 65.6 52.5 35.9 60.8
(d) Ours by binary feature (by seeds) 86.5 78.4 73.7 64.9 55.2 39.9 63.2
(e) Ours without shape prior refinement (by non-refined shape prior) 87.1 78.7 74.6 66.5 58.6 41.3 64.8
(f) Ours without adaptation (with shape prior refinement) 86.9 78.9 75.0 67.0 58.3 41.6 65.0
(g) Ours (full model) 87.2 78.9 75.0 68.7 60.6 41.8 65.8

less impact on PCP within a reasonable range, 0 < γ < 0.2.
Too large γ leads to the overlap between FG and BG seeds,
which causes difficulty in extracting reasonable PS features.
In addition, γ has no impact on computational cost; see
Fig. 7 (b). Those results reveal the nice property of the pro-
posed PS feature, namely robustness to γ selection. From
the results shown above, γ = 0.1 was selected.

6.4 Comparative Experiments

Tables 2, 3 and 4 show the results of quantitative evalua-
tion. For comparison, the results obtained by several other
methods (i.e. (a), (b), and (c)) are shown.

The effects of the proposed schemes were evaluated
with (d) initial binary PS features obtained only by seeds
(i.e. shape priors were not used for part segmentation), (e)
PS features obtained by dense shape priors without shape
prior refinement, (f) PS features without domain adaptation
(i.e. concatenated features defined by Eqs. (4) and (5) were
not used), and (g) the full PS features obtained by using all
schemes proposed in this paper.

In all results shown in Tables 2, 3 and 4, our proposed
method with the full model, (g), outperformed all others.
On the other hand, our methods had less impacts in BUFFY.

This might be because 1) many images in BUFFY have low
contrast that makes segmentation difficult, and 2) people in
BUFFY, who were pictured larger than those in IP and LSP,
were too over-segmented by SLIC [18]. While more delib-
erate segmentation methods (e.g. globalPb [17]) might al-
leviate those problems, they need much computational cost.
For example, globalPb took 30 sec or more, while SLIC [18]
took around 1 sec for segmentation of each image in IP.

By comparing the results of the base and our meth-
ods (c), (d), (e), (f), and (g), we can see the effects of the
proposed schemes, namely binary PS feature (difference be-
tween (c) and (d)), dense shape prior (difference between
(d) and (e)), shape prior refinement (difference between (e)
and (f)), and domain adaptation (difference between (f) and
(g)). Comparison among (d), (e), (f), and (g) reveals that
shape prior refinement has less impact on PCP in contrast
to other schemes. For visualizing the effects of the pro-
posed schemes, Fig. 11 shows poses estimated by methods
(c), (d), (e), (f), and (g). In this typical example, the score
of PCP increases monotonically from (c) to (g), while sev-
eral schemes cannot improve the PCP score. However, such
schemes also get some qualitative improvements. For ex-
ample, domain adaptation can localize the left leg better as
shown in Fig. 11 (g), while the PCP scores of (f) and (g) are
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Fig. 8 BUFFY stickmen dataset: pose estimation results. For each test image, two results are shown:
(Top) our method, (Bottom) mixture model of non-oriented parts [25]. The number of correctly localized
parts is shown under each result.

Fig. 9 IP dataset: pose estimation results.

Fig. 10 LSP dataset: pose estimation results.

equal.
Figures 8, 9 and 10 show examples of results improved

by the proposed method with the full model. For visualiza-
tion, 6 and 10 parts, whose joints are a subset of those of
full-body 26 parts, are displayed. The rightmost example in
Fig. 9 shows a typical case where the PS features could lo-
calize a limb (i.e. lower-arms) without being disturbed by a

noisy background.
Figure 12 shows unsuccessful results, where most parts

were mislocated, obtained by the proposed method. From
the results of BUFFY, it can be confirmed that PS features
did not work well in low-contrast regions. The results in
IP reveal that heavy foreshortening and self-occlusion dis-
turbed correct pose estimation. The rightmost example was
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Fig. 11 Effects of the proposed schemes.

Fig. 12 Examples of typical unsuccessful pose estimation results ob-
tained by the proposed method.

one of terrible results, although the body boundary is rela-
tively observed clearly. Further investigation is needed for
finding the causes of these mistakes.

7. Concluding Remarks

This paper proposed the part-segment features for evaluat-
ing the shape of each part. In training, the PS features are ex-
tracted with automatically trained initial seeds and then re-
fined for improving the shape prior on each part. The shape
priors are shared by symmetric parts for efficiency. The ex-
tracted features are discriminatively trained, and their adap-
tive weights with respect to gradient features are also learnt.
In three publicly-available datasets, the proposed method
achieved improvements of 0.8% (from 88.5% to 89.3%),
3.4% (from 79.0% to 82.4%), and 2.9% (from 62.9% to
65.8%) in the rate of successful pose estimation. Future
work includes more efficient extraction and discriminative
representation of the PS feature.
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