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ABSTRACT

While the more learning data the better the recognition, in-
crease in the data causes an expensive computational cost in
learning. This paper proposes how to decrease the computa-
tional cost by appropriately selecting the learning data. In par-
ticular, we put our focus on learning for human pose estima-
tion in still images. Three kinds of methods are proposed for
learning data selection in this paper. The first one divides all
data into several clusters in a feature space for avoiding dupli-
cation of similar data. The second one selects the data based
on their distance from a discriminant plane for efficiently up-
dating it. Third one merges those two methods as well as
pruning in optimized pose search. Experimental results show
that the proposed method can decrease the learning time by
79 % with less decrease in pose estimation accuracy.

Index Terms— Efficient learning, Selecting samples, Hu-
man pose estimation, Deformable part model, Latent SVM

1. INTRODUCTION

Stochastic models for recognition are improved in general by
learning more training samples. A large amount of training
samples, however, leads to a huge computational cost. For
example, ImageNet [1] has 1.2 million images of 1000 object
classes for general object recognition. Model learning with
this dataset requires at least 250 days by traditional image fea-
tures and classifiers [2]. If such long-term model learning is
required only once, it might be acceptable. This assumption is
not reasonable in research and development purposes because
various possible sets of models are tested for obtaining good
recognition results. To this end, a computational cost must be
suppressed as low as possible.

The proposed method reduces a computational cost by ef-
ficiently decreasing training samples. Since random selection
of samples degrades recognition accuracy, careful selection of
samples is important. By selecting samples that are effective
for discrimination between recognition classes, even a small
number of samples would be enough for proper recognition.

In sample selection, a trade-off between a computational
cost and recognition accuracy is crucial. In trials for model
selection, absolute accuracy is not necessarily required but
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Fig. 1. Effects of reducing a computational cost by the pro-
posed method. Red and orange bars show the computational
costs of a general approach (i.e. learning all samples) and the
proposed method, respectively.

relative accuracy of different models should be verified. As-
sume that, both in learning all samples and selected samples,
the same model gets the maximum accuracy. Then the best
model having the max accuracy in trials can be re-trained by
all samples. While that model is trained twice in this scheme,
the total learning time can be reduced as learning potential
models (i.e. Model1, Model2, ..., in Fig. 1) with selected
samples (orange bars in the figure) is much faster than that
with all samples (red bars in the figure). As a result, the to-
tal cost with the selected samples is lower than that with all
samples, as shown in “Summation” in the figure.

In this work, it is assumed that the best models in learn-
ing selected samples and all sample are identical if recogni-
tion accuracy of the model in learning the selected samples is
higher. Based on this assumption, we achieve efficient learn-
ing and high accuracy simultaneously by appropriate sample
selection.

2. RELATED WORK

In this work, the proposed method is applied to human pose
estimation in still images. This is because 1) human pose
estimation has a variety of applications for observing human
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Fig. 2. Pose estimation by PSM. Each node and link depicts
a part and connection between parts, respectively.

activities and 2) human pose estimation is a complex problem
with a huge number of parameters. Since modeling a number
of parameters a requires large computational cost, efficient
modeling such as the proposed method is useful.

For human pose estimation, appearance features, geomet-
ric configuration models such as deformable part models, and
discriminative models take key roles.

For representing the appearance of body parts, HOG [3]
is powerful and its extensions have been also proposed. For
example, the histogram bins of HOG are weighted for body
parts detection in [4]. Robustness to occlusion is improved
by integrating HOG and LBP [5] in [6]. Appearance between
parts can be also modeled [7].

Among all of deformable part models, pictorial structure
models (PSM) [8] are most efficient in pose estimation. Other
structures have been also proposed for improving ability of
expressing the relationship among parts (e.g. [9]). Efficient
modeling can be also achieved by clustering parts’ appear-
ances [4, 10] and configuration [11, 12].

Discriminatively-trained deformable part models [13] al-
low us to improve discriminativity for finding correct human
poses by learning not only positive (i.e. human regions) but
also negative samples.

As summarized above, various parameters (e.g. weights
of histogram bins, the number of clusters) are used in models
for pose estimation. These parameters should be determined
properly for better models.

Efficient learning of human pose models has been pro-
posed in [14, 15]. These previous methods, however, achieve
efficient learning only for modeling appearance parameters
(i.e. no efficient learning for geometric relationships between
parts). In addition, no explicit criterion is used for efficient
sample selection. Compared with these previous methods,
the proposed method selects samples based on all parameters
with several criteria for efficient learning.

3. PICTORIAL STRUCTURE MODELS FOR HUMAN
POSE ESTIMATION

A tree-structured PSM is visualized in Fig. 2. The tree model
G = (V,E) consists of n nodes V = {v1, ..., vn}, corre-
sponding to body parts, and links ei,j ∈ E, where ei,j con-
nects two parts vi and vj . Each node i has its pose parameters,
li, that localize the respective part. The pose parameters are
optimized by minimizing the score function below:

L∗ = argmin
L

( n∑
i=1

mi(li) +
∑

(vi,vj)∈E

dij(li, lj)

)
, (1)

where mi(li) and dij(li, lj) denote dissimilarity scores of the
appearance feature of i-th part and the deformation score be-
tween parts i and j, respectively.

4. MODEL LEARNING BY LATENT SVM AND ITS
PROBLEM IN COMPUTATIONAL COST

Discriminative learning for human pose estimation needs
“positive images where the parts of a human body are anno-
tated” and “negative images where no people is observed”.
In what follows, “the region of a human body observed in
a positive image” and “any region observed in a negative
image” are called a positive sample and a negative sample.
With positive samples, the appearance features of parts and
the geometric relationship between them are modeled as pa-
rameters in Eq. 1. Learning negative samples allows us to
optimize the parameters so that they discriminate between
body parts and other objects that are similar to those parts.

For learning negative samples, the region of a human body
in a negative image is detected by a PSM. The detected region
must be a false-positive. The detected false-positive is used
as a negative sample for re-learning the PSM. In the proposed
method, this learning is performed by the latent SVM [13]:

Step1 PSM is trained by the latent SVM with all positive im-
ages and a few negative images.

Step2 PSM finds false-positives in a new negative image.

Step3 This false-positive is used as a negative sample by the
Latent SVM for re-learning PSM.

Step4 Steps 2 and 3 are repeated until no false-positive is
detected.

Step5 If no false-positive is detected, go back with a new
negative image to Step 2

The steps 2, 3, 4, and 5 are repeated for all negative im-
ages. Negative samples detected in a negative image must
be trained one by one with the latent SVM for semi-convex
optimization. These iterative learning steps lead to a huge
computational cost in learning by the latent SVM.



Table 1. Change in accuracy among different models.
Accuracy (%) Model A Model B Model C

All negative images 62.67 62.22 61.94
Randomly-selected 53.38 53.70 53.60images

5. EFFECTS OF DIFFERENT SELECTIONS OF
SAMPLES

This section proves the necessity of efficient sample selection
for human pose estimation using PSM (mentioned in Sec. 3)
and discriminative learning (mentioned in Sec. 4).

Given different three models A, B, and C, all of which
were trained with the same number of samples, the mod-
els were used for human pose estimation. Model A was a
mixture-part model [4]. Model B was same with Model A
except that the histogram bins of HOG was reduced to 27;
Model A had 32 bins. The number of mixture-parts in Model
C was reduced to 3; Model A had 5 mixture-parts.

Positive and negative images were given by Leeds Sports
Pose (LSP) dataset and INRIA Person dataset, respectively.
2000 images in LSP were divided to 1000 training positive
images and 1000 test images. All of 1218 background images
in INRIA Person were used as negative sample images. For
all models, while the same set of positive images was used,
two different sets of negative images were tested. One set
consists of all negative images (“All negative images” in Table
1). The other one had 3 % of all negative images, which were
selected randomly (“Randomly-selected images” in Table 1).
Results shown in all tables in this paper (Tables 1 to 6) were
the means of ten trials.

Table 1 shows that the best models obtained from all neg-
ative samples and randomly-selected samples were different.
These results demonstrated the necessity of efficient sample
selection.

6. NEGATIVE SAMPLE SELECTION AND
EXPERIMENTS

6.1. Overview

Iterative learning of negative samples is dominant in learning
by the latent SVM in terms of a computational cost. This
iteration is reduced by efficiently selecting negative samples.

This paper proposes the three selection methods below:

Clustering: Efficiently distributed negative samples are se-
lected by clustering (Sec. 6.3).

Distance from a decision boundary: A decision boundary
is updated efficiently by selecting samples that are far
from the decision boundary (Sec. 6.4).
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Fig. 3. (Left) False-positives extracted in each negative im-
age. (Right) The number of selected negative samples, which
is defined by Eq. (2). Horizontal and Vertical axes show re-
spectively the IDs of negative images and the number of false-
positives/selected-samples.

Clustering after distance-based selection: In addition to
integration of clustering and distance-based selection,
1) the dimension of a feature vector is decimated for
fast clustering and 2) pruning makes pose optimization
efficient. (Sec. 6.5).

As with experiments in Sec. 5, LSP and INRIA Person
datasets were used in experiments in this section.

6.2. The Number of Negative Samples

The proposed methods determine the number of negative
samples depending on the number of false-positives. The re-
lationship between two values is determined in advance based
on the propensity of the number of false-positives in negative
images given one by one. Figure 3 (Left) shows the numbers
of false-positives detected in negative images. The negative
images are used for learning in order of their IDs, which
appear in the horizontal axis of the graphs in Fig. 3. It can be
seen that many false-positives were detected at the beginning
of the learning step because of a model is premature.

In accordance with the number of negative samples, the
number of negative samples is expressed as follows (shown
in Fig. 3 (Right)):

NNS =
NFP√
NFP + 1

, (2)

where NFP denotes the number of false-positives. In all
experiments shown in the following sections, NNS false-
positives are selected for negative samples in each image.

6.3. Proposed Method 1: Selection using Clustering

The proposed method 1 assumes that widely-distributed sam-
ples can efficiently improve a human pose model. Based on
this assumption, K-means clustering is applied to all false-
positives detected in each negative image. A false-positive
that is closest to the centroid of false-positives in each cluster



Table 2. (Proposed method 1) Results of pose estimation with negative samples selected by clustering. Each value in brackets
indicates the percentage of the cost of learning all samples.

Accuracy Learning Search Clustering Total
% Sec Sec Sec Sec

Clustering 57.76 653 (11) 1676 (71) 3791 6120 (74)
Random 55.32 714 (12) 1674 (71) - 2388 (29)

All samples 62.71 5911 2362 - 8273

Trained negative samples
Trained positive samplesNew negative samples

Current boundary line

Boundary line obtained by new negative samples that 

are near the current boundary line Boundary line obtained
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Fig. 4. Selecting negative samples that are far from a decision
boundary for efficient learning. By learning only samples that
are far from a decision boundary, a red boundary is learned
without temporally learning a pink boundary.

is regarded as its representative sample. The number of the
clusters is NNS in Eq. 2.

The results of the proposed method 1 are shown in Table
2. The results of all false-positive learning and randomly-
selected sample learning are also shown for comparison. In
the random selection method, NNS false-positives were se-
lected in each negative image. “Search” in the table shows
the computational time for finding all false-positives. The
time for learning negative samples is shown in “Learning”.
The total computational time is shown in “Total”.

The proposed method improved accuracy 2 % compared
with random selection, while the computational cost was re-
duced to 11 % of that of learning all samples. However, the
total time of the proposed method was much larger than that
of random selection due to a huge cost for clustering. This
clustering was computationally expensive because 1) a large
number of false-positives are clustered and 2) the dimension
of a false-positive feature vector is huge, 13489 dimensions in
the implementation of [4]: 512D HOG at each part, 26 parts,
4 geometric parameters at each link, 25 links, and 77 other
parameters ((512× 26) + (4× (26− 1)) + 77 = 13489).

6.4. Proposed Method 2: Selection based on a Distance
from a Decision Boundary

The proposed method 2 selects negative samples each of
whose distance from a decision boundary is larger. It is ex-
pected that this criterion allows us to significantly update the
decision boundary for efficient learning, especially when a
human pose model is not matured. In a typical toy example
illustrated in Fig. 4, false-positives depicted by red points are
detected. If false-positives near a current decision boundary,
depicted by a green curve, are selected for negative samples,
the decision boundary is updated to a pink curve. When other
remaining false-positives are trained later by the latent SVM,
a red curve is obtained eventually as the decision bound-
ary. This example gives us intuition about the advantage of
learning samples that are far from a decision boundary.

The basic learning steps of the proposed method 2 are
same with those described in Sec. 4, except that the distance
values between all false-positives and a decision boundary are
sorted in descending order for selecting NNS negative sam-
ples in Step 3. The following two features are used for com-
puting a distance between a sample and the decision bound-
ary:

Feature of a full body A 13489 dimensional feature vector
of a full body is used for computing the distance. This
distance is automatically obtained in human pose de-
tection using the PSM trained by the latent SVM.

Appearance feature of a part having the max variance:
The variance of each component of HOG is computed
for obtaining the summation of the variance values of
all components in each part. Given p-th part having the
max summation, the 512D HOG feature of p-th part
is used for distance computation. This criterion is de-
signed for selecting a part with a variety of appearance
for efficient learning. A distance in 512 dimensions is
expressed by dissimilarity of p-th part. This dissimi-
larity score is computed in the pose estimation process
(mi(li) in Eq. (1)).

The above two kinds of distance are computed in the pose
estimation process, which is performed before negative sam-
ple selection. This results in fast sample selection with no
additional processes.



Table 3. (Proposed method 2) Results of negative sample
selection based a distance from a decision boundary (using
LSP + INRIA).

Accuracy Learning Search Total
% Sec Sec Sec

Full body 58.83 772 1683 2465
Max var 57.84 1051 1664 2715
Random 55.81 754 1674 2428

All samples 62.71 5911 2362 8273

Table 4. (Proposed method 2) Results of negative sample
selection based a distance from a decision boundary (using
PARSE + INRIA).

Accuracy Learning Search Total
% Sec Sec Sec

Full body 70.94 588 2563 3051
Max var 69.89 859 2479 3338
Random 68.24 590 2612 3102

All samples 76.21 3428 4233 7661

We conducted experiments with the two distance metrics.
Table 3 shows that 1) the two distance metrics outperformed
all-sample learning in terms of accuracy and 2) their compu-
tational costs were comparable with that of random selection.

Since the results of the two metrics differed by only 1 % in
terms of accuracy, more experiments were conducted with an-
other dataset for further verification. The Image Parse dataset
was used as positive and test images. The results are shown in
Table 4. The results of the Image Parse dataset also prove the
properties of the proposed method 2, which is almost same
with those shown in Table 3.

6.5. Proposed Method 3: Selection based on Distribution
of Samples

The proposed method 1 requires a huge cost due to clustering
huge-dimensional features. The proposed method 2 might se-
lect false-positives that are closer to each other, which cause
inefficient learning. For complementarily integrating those
two methods, the proposed method 3 narrows down false-
positives based on a distance from a decision boundary and
then clusters them.

The number of negative samples (i.e. the number of clus-
ters) is NNS in Eq. (2). The NNS negative samples are se-
lected by clustering NSC negative samples that are selected
from all negative samples by the proposed method 2. In the
proposed method, this number NSC is defined as follows:

NSC =
NFP

4
√
NFP + 1

(3)

Clustering NSC false-positives is made more efficient by
significantly simplifying HOGs in a feature vector. In the base

Table 6. Accuracy in different models.

Model A Model B Model C
% % %

All samples 62.71 62.22 61.94
Proposed 2 (Full body) 56.82 56.33 56.19
Proposed 2 (Max var) 55.72 55.19 54.63

Proposed 3 (Full body) 59.82 59.11 58.88
Random 53.38 53.70 53.60

model [4], each part consists of 4× 4 cells, each of which has
32 orientation bins: 4× 4× 32 = 512 dimensions. The sim-
plified HOG consists of one cell having 16 orientation bins. It
is concatenated with 4D vectors, each of which represents the
geometric relationship between two parts. In our implemen-
tation with 26 parts, (16× 26)+ (4× 25) = 516 dimensional
feature vectors are clustered. Note that the simplified features
are used only for this clustering, while human pose estimation
is performed with full-dimensional features.

In addition, a computational cost for searching false-
positives is reduced by pruning in pose estimation by PSM.
Since PSM employs the dynamic programming for com-
puting the dissimilarity score of each human pose, adding
dissimilarity scores in a tree model can be quit when the
summation of the scores is larger. A threshold for this prun-
ing is determined with a false-positive having the minimum
score, Lmin defined by Eq. 1, detected in the last iteration.
Since Lmin might decrease by iterative learning of negative
samples, the threshold is determined to be 0.9Lmin.

The experimental results of the proposed method 3 are
shown in Table 5. The distance metric using the full-body
feature was used because it was more accurate as shown in
Tables 3 and 4. For comparison, the results of the proposed
methods 1 and 2 are also included in the table. Recognition
accuracy of the proposed method 3 was improved compared
with the proposed methods 1 and 2. The computational cost
could be also reduced. In total, the computational cost was
reduced to 28 % of learning all samples: 8273 sec → 2327.

6.6. Different Models learnt by the Proposed Method

We conducted experiments for proving that the proposed
methods can get the best model that is obtained also by learn-
ing all samples. Only the proposed methods 2 and 3 were
tested because their computational costs are much smaller
than that of the proposed method 1. All experimental condi-
tions in the experiments were equal to those in Sec. 5.

As shown in Table 6, the best models obtained by learn-
ing all samples and the proposed methods were same; model
A got the best accuracy in all learning methods excepting ran-
dom selection. These results empirically demonstrated the ef-
fectiveness of the proposed methods.



Table 5. (Proposed method 3) Results of negative sample selection based on a distance from a decision boundary and clustering.
Accuracy Learning Search Clustering Total

% Sec Sec Sec Sec
Proposed 3 (Full body) 59.82 623 (11) 1068 (58) 46 1737 (21)

Proposed 1 57.76 653 (11) 1676 (71) 3791 6120 (74)(Only clustering)
Proposed 2 (Full body) 58.83 772 (13) 1683 (71) - 2465 (30)
Proposed 2 (Max var) 57.84 1051 (18) 1664 (70) - 2715 (33)

Random 55.32 714 (12) 1674 (71) - 2388 (29)
All samples 62.71 5911 2362 - 8273

7. CONCLUDING REMARKS

This paper proposed efficient model learning by appropri-
ate sample selection. In a human pose estimation prob-
lem, computationally-dominant negative-sample learning is
achieved with the reduced number of samples selected by the
proposed method. For efficient sample selection, the follow-
ing three methods are proposed: 1) selection using clustering,
2) selection based on a distance from a decision boundary,
and 3) fusion of 1st and 2nd methods with dimensionality
reduction of features and pruning in pose optimization. In
learning human pose models with 1000 sample images, the
computational cost decreased by 79 %.

Future work includes 1) how to guarantee the trade-off
between a computational cost and recognition accuracy (i.e.
how to determine the number of selected samples in order to
guarantee that relative recognition accuracy among models is
not changed between learning with all and selected samples),
2) sample selection by more aggressively using the properties
of human-pose features, and 3) using the proposed methods
for other recognition problems.
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