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A. Introduction

We show the following additional results and analyses:
Validity of our hyper parameter setting (Sec. B).
Robustness of MMCM’s hyper parameters (Sec. C).
Validity of our clustering method choice (Sec. D).
Validity of our mode definition (Sec. E).
Additional qualitative results (Sec. F).

Additional other metrics results (Sec. G).

Explicit algrorithm (Sec. H).

Detailed description of the threshold 7 (Sec. I).
Consideration for kinematic constraints(Sec. J).
MMCM for 2D trajectory prediction (Sec. K)
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B. Hyper Parameter Setting

This section explains how we chose the hyper parameters of
the dimensionality reduction and HDBSCAN [15] to show
that our hyper parameter settings are reasonable.

The dimensionality reduction has two hyper parameters:
“AE_dim”, which is the latent dimensionality after the au-
toencoder, and “UMAP_dim”, which is the dimensionality
after UMAP [16]. HDBSCAN also has two hyper param-
eters: “min_cluster_size”, which sets the minimum cluster
size, and “min_samples”, which controls the sensitivity to
noise. Because MMCM depends on these values, they must
be selected carefully.

We select hyper parameters based on the clustering re-
sults, because the objective of employing the autoencoder,
UMAP, and HDBSCAN is to achieve stable clustering. To
measure stable clustering, we use the criteria, which jointly
consider the noise rate and the sum of cluster persistence.
The noise rate is the percentage of data points that are not
assigned to any cluster. A high noise rate indicates that
small but certain clusters are dismissed. The cluster per-
sistence is the lifetime of a cluster in the HDBSCAN con-
densed tree. A high cluster persistence indicates that the
cluster is more stable. A lower noise rate is preferable.
So, we employ HDBSCAN’s approximate-prediction fea-

Table 2. Hyper parameter search range.

Parameters Range
AE_dim {16, 32, 64, 128, 256}
UMAP_dim {2,4,8,16}

min_cluster_size {2,3,4,5,7, 10, 15, 20, 25, 30, 40, 50, 60}

min_samples {1,2,3,4,5,7, 10, 15, 20, 25, 30, 40, 50, 60}

ture to assign clusters to the test data and thus detect the
noise rate for the test set. However, tuning HDBSCAN to
obtain a noise rate of zero forces sparse regions to be treated
as dense, producing unnaturally large clusters. This tuning
result is not suitable. We therefore require the noise rate
to be no greater than one-third, which prevents an excessive
number of points from being classified as noise while avoid-
ing over-suppressing noise. Among hyper parameter set-
tings satisfy the noise rate criterion, we select setting whose
cluster persistence is maximam. The hyper parameters se-
lected by the criterion can avoid both over-segmentation
and under-segmentation. Here, we call this criterion the
noise—persistence criterion.

We performed a search over the ranges listed in Table 2.
The search results for each dataset are reported below.

Human3.6M Table 2 lists 3,640 candidate hyper param-
eter combinations. Presenting all results would be difficult
to understand, so Table 3 reports representative results.

We first examine the effect of the autoencoder di-
mension (AE_dim). The UMAP_dim is fixed at 2, and
AE_dim is varied across several values. For each choice
of AE_dim, we select the HDBSCAN parameters that meet
the noise—persistence criterion. The results correspond to
Ref.idx = {1,2,3,4,5}. The cluster persistence increases
from 16 to 64 latent dimensions but decreases beyond 64,
indicating that an AE dimension of 64 is optimal. Next, we
examine the effect of the UMAP dimension (UMAP_dim).
We fix AE_dim at 64 and sweep the UMAP dimension,



Table 3. Results of hyper parameter search in H36M. Red and blue
indicate the best and second-best results.

.. |AE_ UMAP_ .- min_ noise ch'lster

Ref.idx | ,. . cluster_ persistence
dim dim . samples | rate (%)
size T

1] 16 2 50 4 12 6.36
2| 32 2 15 1 33 18.24
3| o4 2 15 1 32 21.93
41128 2 20 1 32 21.06
51256 2 29 1 33 20.54
6| 64 4 20 4 10 9.31
7| 64 8 20 2 8 12.03
8| 64 2 2 1 49 17.23
9| 64 2 50 1 7 6.27
10| 64 2 15 10 10 9.36

Table 4. Results of hyper parameter search in AMASS. Red and
blue indicate the best and second-best results.

.. |AE_ UmMAP. ™™ min_ noise clgster
Ref.idx | . . cluster_ persistence
dim dim . samples | rate (%)
size T
1| 16 2 60 1 40 21.61
2| 32 2 60 1 32 16.75
3| 64 2 50 1 31 22.43
41128 2 50 1 30 21.76
5| 256 2 60 5 30 17.83
6| 64 4 50 1 43 20.33
7| 64 8 50 20 43 17.71
8| 64 2 10 1 41 1.56
9| 64 2 50 60 23 12.25

again selecting the best HDBSCAN parameters for the
noise—persistence criterion. Ref.idx = {3,6,7} show that
a two-dimensional UMAP embedding is the most stable.
Finally, with AE_dim = 64 and UMAP_dim = 2, we vary
HDBSCAN’s min_cluster_size and min_samples. Results
appear as Ref.idx = {3,8,9,10}. Some combinations mark
nearly half the data as noise or yield very low cluster per-
sistence. Figure 11 visualises the corresponding clustering
results; grey points denote data classified as noise. From
top to bottom, the plots correspond to Ref.idx = {3,8,9}.
Although Ref. idx 3 seems to differ from Fig. 7 in the main
paper, the two plots match after re-assigning noise points to
their nearest cluster centroid as described in the main paper.
Ref.idx 8 yields 4,254 clusters, which is clearly an over-
segmentation, whereas Ref.idx 9 merges almost the entire
distribution on the right-hand into a single cluster. In con-
trast, the setting adopted by MMCM (top) avoids both ex-
treme results, demonstrating that the chosen hyper parame-
ters have an appropriate balance.

AMASS We perform the same hyper parameter analy-
sis on the AMASS dataset. Representative combinations
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Figure 11. Clustering results with other parameters in H36M. Top:
Ref.idx=3, Center: Ref.idx=8, Bottom: Ref.idx=9
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Figure 12. Clustering results with other parameters in AMASS.
Top: Ref.idx=3, Center: Ref.idx=8, Bottom: Ref.idx=9

are listed in Table 4. As with H36M, comparing Ref. idx
= {1,2,3,4,5} shows that an AE_dim of 64 is appropriate,
while the comparison of Ref.idx = {1,6,7} indicates that
a UMAP_dim of 2 is optimal. Next, we examine the HDB-
SCAN parameters with AE_dim fixed at 64 and UMAP_dim
fixed at 2; the relevant rows are Ref.idx = {3,8,9}. Some
settings drive the cluster persistence to extremely low val-
ues. Figure 12 visualizes these clustering results. The mid-
dle plot (Ref.idx 8) yields 1,803 clusters, an obvious case
of over-segmentation. The bottom plot (Ref. idx 9), in con-
trast, produces too few clusters and is likely to group more
different motions in the same cluster. The top plot, corre-
sponding to the hyper parameter combination adopted by
MMCM, avoids both extremes, demonstrating that the cho-
sen hyper parameters are well balanced.

Discussions As noted above, our hyperparameter selec-
tion criteria are clear, and the settings can be determined
with a simple search. In practice, our official repository
provides a script (./compute_mmcm/parameter_search.py)
that grid searches these parameters (latent dimension,
min_cluster_size, and min_samples) and tunes them auto-
matically in about 20 minutes (training the autoencoder, if
needed, takes a few additional hours).

Moreover, we argue that reasonable defaults can be set
even without an explicit hyperparameter search. Com-
paring Human3.6M and AMASS, we find that AE_dim,
UMAP_dim, and min_samples are identical (64, 2, and 1,
respectively). This suggests that, for other datasets, these
three hyperparameters are likely to take the same—or very
similar—values. By contrast, min_cluster_size differs be-
tween Human3.6M and AMASS because it scales with
dataset size: as it controls the minimum cluster size, smaller
datasets require smaller values, whereas larger datasets re-
quire larger ones. In our experiments, Human3.6M (14,847
sequences) used min_cluster_size = 15, while AMASS
(60,272 sequences) used 50, consistent with this trend.
From these two points, we obtain a simple linear rule: for
a new dataset of size x, set min_cluster_size ~ x/1000 to
2/1200. These experimental findings will make hyperpa-
rameter setting easier.

C. Robustness of MMCM with Respect to Hy-
perparameters

In this section, we examine the metric’s robustness to
hyperparameter choices on AMASS under the same ex-
perimental setting as mentioned in Fig. 10 about H36M.
The hyperparameters of MMCM include the embedding
dimensionality and the HDBSCAN clustering parameters
“min_cluster_size” and “min_samples”. We conducted com-
prehensive experiments on all of them. Specifically, the em-
bedding dimensionality was controlled by varying UMAP’s
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Figure 13. MMCM sensitivity to the some hyper parameters on
AMASS. For all hyperparameters, changing our selected settings
does not affect the relative ranking of HMP methods.

Table 5. Results of our two-stage pipeline and other dimension-
ality reduction methods in H36M. Red and blue indicate the best
and second-best results.

. Noise Cluster Number

Method Dim .
rate (%) persistence T  Cluster
No reduction 4,944 66 7.49 157
Autoencoder 64 97 8.62 26
Autoencoder 2 51 18.82 287
PCA 2 57 15.38 306
Autoencoder 2 48 1535 321

+PCA
UMAP 2 36 20.80 297
Autoencoder 2 k) 21.93 324
+ UMAP (Ours)

output dimension. Figure 13 shows how the MMCM scores
of the HMP methods (CoMusion [22], BeLFusion [4],
DLow [24], GSPS [14], DivSamp [6]) change as these hy-
perparameters are varied.

Across all hyperparameters, changing their values
slightly affects the absolute MMCM scores but not the rel-
ative ranking of methods. Since a key requirement for an
evaluation metric is to discriminate between methods, these
results indicate that MMCM is largely insensitive to hyper-
parameter choices; in other words, MMCM is robust to hy-
perparameter settings.

D. Comparison with Other Dimensionality Re-
duction Methods

We employ a two-stage dimensionality reduction pipeline
that first encodes each motion with an autoencoder and then
applies UMAP. To demonstrate that this choice is the most
suitable preprocessing for clustering, we compare it with
five alternatives:

1. No reduction,
2. Autoencoder,
3. PCA,

Table 6. Results of our two-stage pipeline and other dimensional-
ity reduction methods in AMASS. Red and blue indicate the best
and second-best results.

. Noise Cluster Number

Method Dim .
rate (%) persistence T Cluster
No reduction 7,749 97 8.14 29
Autoencoder 64 10 0.04 2
Autoencoder 2 20 8.22 254
PCA 2 51 5.93 242
Autoencoder ) 3 0.02 3

+PCA
UMAP 2 28 19.65 239
Autoencoder 2 31 22.43 278
+ UMAP (Ours)

4. Autoencoder + PCA
5. UMAP,
6. Autoencoder + UMAP (Ours),

Since the purpose of the dimensionality reduction is to
achieve stable clustering, we compare these dimensionality
reduction methods by evaluating the clustering results. Af-
ter applying each dimensionality reduction method to both
datasets, we perform HDBSCAN and record the resulting
cluster persistence, noise rate, and number of clusters.

The results in H36M are summarised in Table 5. Our
“Autoencoder + UMAP” pipeline achieves the highest clus-
ter persistence while keeping the noise rate low. The results
in AMASS are summarised in Table 6. As same as results in
H36M, “Autoencoder + UMAP” pipeline achieves the high-
est cluster persistence. These results in both datasets con-
firm that our pipeline is the best option for dimensionality
reduction before clustering.

E. Mode Definition

This section contains two subsections. Section E.| demon-
strates the superiority of our choice of clustering approach
by comparing it with several alternative clustering ap-
proaches. Section E.2 shows action label distribution and
subject label distribution in human motion space of H36M
and each dataset distribution in human motion space of
AMASS.

E.1. Comparison with Other Clustering Methods

We adopt HDBSCAN as our clustering approach. In
this section, we demonstrate that HDBSCAN is well-
suited for clustering human motion space by comparing
it with four alternatives: k-means [12], k-means++ [2],
BIRCH [26], and Agglomerative Clustering [17]. Although
two-dimensional visualizations, such as Fig. 14, offer intu-
ition, they do not allow for a quantitative comparison be-
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Figure 14. Visualizations of the two-dimensional motion space
clustered by k-means++ or HDBSCAN.

Table 7. Comparison of HDBSCAN and other clustering ap-
proaches. Red and blue indicate the best and second-best results
for each metric.

Clustering method Silt DBy CH?Y
k-means 0.419 0.744 53248
k-means++ 0436 0.714 61332
BIRCH 0.380 0.807 39806
Agglomerative Clustering | 0.412 0.738 55604
HDBSCAN (Ours) 0.461 0.636 49241

tween different clustering approaches. We therefore evalu-
ate all methods with three standard quantitative metrics:

¢ Silhouette Coefficient (Sil) [20] — the mean difference be-
tween a sample’s intra-cluster distance and its nearest-
cluster distance; higher values indicate better separation.

* Davies—Bouldin Index (DB) [7] — the average similarity
between each cluster and its most similar cluster; lower
values indicate better separation.

¢ Calinski—Harabasz Index (CH) [5] — the ratio of between-
cluster dispersion to within-cluster dispersion; higher val-
ues indicate more distinct clusters.

Table 7 reports the scores for all five approaches. Here,
since clustering methods other than HDBSCAN require the
number of clusters in advance, we set this number to the
same number of clusters obtained by HDBSCAN. HDB-
SCAN achieves the best Silhouette Coefficient (Sil) and
the lowest Davies—Bouldin Index (DB), marking it as the
top performer on two of the three criteria. k-means++
records the highest Calinski-Harabasz Index (CH), but its
Sil and DB scores are poorer than HDBSCAN. Taken to-
gether, these results confirm that HDBSCAN is the most
suitable clustering approach for partitioning the human mo-
tion space.

E.2. Human Motion Space

Human3.6M. Because the H36M dataset provides both ac-
tion and subject labels, we visualised the human motion
space by coloring the points with these labels. The results

Action label
.+ Directions Photo smoking
Discussion «  Posing Waiting
Eating Purchases WalkDog
Greeting Sitting WalkTogether
Phoning SittingDown Walking
‘.
'.\'B‘j‘.’;‘m
T,
Yo
AET R4
: N
Subject label
« 5l S5 56 ST . S8

Figure 15. Two-dimensional motion space of H36M after Autoen-
coder + UMAP reduction. Top: points are colored by action label.
Bottom: the same points, colored instead by subject label.

are shown in Fig. 15. Note that an action label is labeled to
the entire source video, not to each sequence extracted by
the sliding window. For example, a “Smoking” sequence
may contain segments of walking or sitting.

In the action label plot, action labels such as “WalkTo-
gether” and “Walking” appear close to each other because
they are kinematically similar. Moreover, they are clearly
separated from most other actions. In contrast, a broad la-
bel that contains various motions, such as ‘“Posing”, spreads
across much of the space. A similar pattern emerges in the
subject label plot. Data from the same subject form local
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Figure 16. Two-dimensional motion space of AMASS colored by
each dataset in AMASS.

groups, but each subject performs multiple actions, so their
sequences still scatter over the space.

These observations show that neither action labels nor
subject labels cleanly partition the human motion space.
Therefore, defining modes by clustering, not using labels,
is the appropriate choice for our method.

AMASS. Because the AMASS dataset is composed of
multiple independent datasets, we visualised the human mo-
tion space by coloring the points with these datasets. The
results are shown in Fig. 16.

Some datasets cluster tightly in latent space. For exam-
ple, motions from the BMLhandball dataset concentrate in a
small region because motions feature the distinctive “throw-
ing a ball” pose shown beneath Fig. 16. By contrast, mo-
tions from many other datasets are widely scattered. These
observations confirm that dataset names do not provide a
reliable criterion for mode definition.

F. Additional Qualitative Results

This section shows additional results for Fig. 4 (Sec. F.1)
and Fig. 5 (Sec. F.2) in the main paper. These results indi-
cate that MMCM meets two requirements for multimodal-

Table 8. Quantitative comparison with other metrics. Red and blue
indicate the best and second-best results for each metric.

Method Human3.6M AMASS
MMCM?t NLL| CMD| FID] | MMCM? NLL| CMDJ|
TPK 0.520 -5.35 6.326 0.538 0.374 -3.47 17.127
DLow 0.487 -3.09 4.927 1.255 0.314 -3.33 15.185
GSPS 0.417 -294 10.758 2.103 0.256 -2.83 18.404
DivSamp 0.409 -3.69 11.692 2.083 0.198 -3.01 50.239
HumanMAC 0.504 -5.35 - - - - -
BeLFusion 0.509 -2.70 5.988 0.209 0.386 -3.17 16.995
CoMusion 0.521 -494 3202 0.102 0.378 -527 9.636

ity: (a) coverage and (b) validity.
F.1. Additional Results for (a) Coverage

This section presents additional results that complement
Fig. 4 in the main paper. In Fig. 17, the top row visualizes
all 50 predicted motions, whereas the bottom row shows
one representative motion from each mode. Across all se-
quences, the qualitative impression of multimodality is con-
sistent with the quantitative MMCM scores.

F.2. Additional Results for (b) Validity

This section presents additional results of Fig. 5 in the
main paper. Outlier motions excluded from valid modes are
shown in Fig. 18. In every sequence, we observe motions
with unrealistically elongated limbs or otherwise kinemat-
ically impossible poses. MMCM correctly flags these mo-
tions as abnormal, demonstrating that it meets (b) validity.

G. Comparison with Realism Metrics and
Probabilistic Metrics

In Table 1 of the main manuscript, we compare multimodal-
ity metric (MMCM) with diversity metrics and accuracy
metrics. In this section, we compare MMCM with addi-
tional metrics, which are realism metrics (FID and CMD)
and probabilistic metrics (Negative Log-Likelihood, NLL).
Realism metrics are described in Sec. 2.2 of the main pa-
per. NLL evaluates the predictive distribution in probabilis-
tic approaches and is commonly used in the 2D trajectory
prediction task. To enable comparison across a broad set of
motion prediction methods, following Salzmann et al. [21],
we approximate NLL using Kernel Density Estimate-based
Negative Log-Likelihood (KDE-NLL). Concretely, KDE-
NLL is the mean negative log-likelihood of the GT under a
distribution obtained by fitting a kernel density estimate to
the predicted samples. These results are shown in Table 9.
Here, computing FID requires class labels; since AMASS
has not class lavels, we report FID only on Human3.6M.
We observe that MMCM and NLL do not correspond.
This is because they evaluate different objectives, although
both are used to evaluate probabilistic methods. NLL
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Figure 17. Multimodality comparison between HumanMAC and CoMusion, which are additional results of Fig. 4 in the main paper. The
values of our metrics are displayed beneath each sequence.
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Figure 18. Predictions from DLow classified as abnormal, which
are additional results of Fig. 5 in the main paper.

measures how closely the predicted distribution concen-
trates around a single GT, whereas MMCM evaluates the
agreement between the predictions and the multiple GTs
(MMGTs). Hence, different outcomes between MMCM
and NLL are to be expected. As FID and CMD are
realism-aware metrics, they serve a different purpose from
MMCM’s assessment of multimodality and therefore ex-
hibit different trends from those of MMCM.

H. Explicit Algorithm

In this section, we show the explicit algorithm of MMCM
to help implement it. Algorithm 1 summarizes the whole
process mentioned in Sec. 4 in the main paper.

I. Detailed Description of Distance Threshold

To remove the outlier, we use a distance threshold 7 for ab-
normality: if the distance to the nearest mode exceeds T,
the prediction is labeled to be abnormal. As explained in
the main paper, 7 is empirically set larger than the max-
imum distance observed when the same procedure is ap-
plied to only normal motions, thereby preventing false pos-
itives. The resulting values are 7 = 1.024 for H36M and
7 = 3.140 for AMASS.

A potential concern is that MMCM might be highly
sensitive to the choice of 7: if so, its scores could vary
widely across datasets or even reverse the ranking of meth-

Algorithm 1: Computation of MMCM

Input: Last 3 frames of past X’ = {p:_3, pt—2,Dt—1},
predicted future motions {Y*}!_,

Data: Cluster centres {u }, Modes of MMGTs M,
Distance threshold for abnormality 7

1. Mode assignment
d, k + NearestCentre({X' + Y}, {ux})
fori=1,...,1do

mi <—
—1 otherwise
M « {m,...,ms}

2. Mode Coverage Rate C', Mode Validity Rate V/
U,U < unique(M), unique(MI)

UnU|
C +
I{ o U}l
m; €
Ve oo/
|M]|
3. Score
20V
MMCM <«
cC+V
return MM CM
® DLow BeLFusion CoMusion
Human3.6M AMASS
0.6 0.5
0.5 0.4
0.4
0.3
0.3
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0 0.2 0.4 0.6 0.8 1 1.2 0 1 2 3 4
T

Figure 19. MMCM sensitivity to the threshold 7. For both H36M
(left) and AMASS (right), the scores for DLow, BeLFusion, and
CoMusion stabilise once 7 exceeds a certain value. The chosen 7
(1.024 in H36M and 3.140 in AMASS) is in this plateau region.

ods, undermining MMCM’s reliability. To verify robust-
ness, we vary 7 and plot MMCM for three representative
methods (DLow [24], BeLFusion [4], and CoMusion [22]);
the curves are shown in Fig. 19. For both datasets, MMCM
converges once 7 exceeds a certain value, and our selected
thresholds lie in this plateau region. Thus, MMCM is not
largely dependent on 7 setting, and moderate changes to the
threshold have little impact on the scores.

These results indicate that the chosen 7 removes only
highly abnormal motions. In other words, most abnormal
predictions are not identified by the threshold 7, but rather



Table 9. Comparison with “MMCM without kinematic constraint
(original)” and “MMCM with kinematic constraint”, respectively
described as “w/o Kin. Const.” and “w/ Kin. Const.”. Red and
blue indicate the best and second-best results for each type.

MMCMT(C1/VT)
Method w/o Kin. Const. w/ Kin. Const.
DLow 0.487 (0.569/0.539) | 0.274 (0.412/0.282)
HumanMAC | 0.492 (0.465/0.713) | 0.412 (0.425/0.562)
CoMusion 0.521 (0.528/0.666) | 0.423 (0.477/0.503)

by whether they fall outside the set of valid modes deter-
mined after mode assignment.

J. Kinematic Constraints

In the original MMCM, a prediction is considered valid if
its mode matches one of the MMGT modes in a fully data-
driven fashion. This MMCM can be extended with explicit
kinematic constraints. As a simple yet reasonable constraint
in our preliminary experiments, we compare limb lengths
(arms or legs) between the last frame of the past motion and
the predicted motion. If any limb length changes by 25% or
more, the motion is classified as kinematically invalid.

As shown in Table 9, the relative ranking remains con-
sistent for all methods, regardless of whether the kinematic
constraint is used. However, we also observe that the valid-
ity score V' in MMCM decreases when the constraint is in-
troduced, suggesting that the kinematic constraint correctly
penalizes invalidly-changed limb lengths. These findings
indicate that kinematic constraints can facilitate a more ro-
bust validity assessment. As future work, more principled
constraints, such as anatomical priors inspired by recent
studies [11, 18, 23, 25], could be designed to better capture
the validity.

K. MMCM for 2D Trajectory Prediction

In this section, while MMCM is originally proposed for
HMP, we evaluate 2D trajectory prediction methods by
MMCM to demonstrate its applicability to other tasks.

K.1. Method

The MMCM for 2D trajectory prediction is computed in es-
sentially the same way as the MMCM for HMP described
in the main paper. The only difference lies in dimensional-
ity reduction. For HMP, which involves high-dimensional
data (approximately 5,000 dimensions), MMCM employs a
two-stage pipeline with an autoencoder followed by UMAP.
In contrast, since 2D trajectory data is low-dimensional (ap-
proximately 20 dimensions), we apply only UMAP. Apart
from this point, it is identical to the original MMCM.

K.2. Experimental Setup

Datasets. These experiments are conducted on ETH/UCY
dataset [10, 19]. This dataset consists of five subsets: ETH,
HOTEL, UNIV, ZARA1, and ZARAZ2. Following common
practice [9, 13], we set the past window to B = 8 frames
and the prediction window to 1" = 12 frames.

Hyper parameters. As with MMCM for HMP, we tune its
hyperparameters for each subset.

Metrics. In addition to MMCM, we also report
APD—although it is rarely used in 2D trajectory predic-
tion—to enable comparison with MMCM. We further in-
clude ADE and FDE, the widely used accuracy metrics for
2D trajectory prediction.

2D trajectory prediction methods. Metrics are evaluated
with the following existing 2D trajectory methods: Singu-
larTrajectory [3], FlowChain [13], MID [8], and Social-
LSTM [1].

K.3. Experimental Results

Quantitative results for each method are showed in Table 10.
Consistent with the HMP results, in 2D trajectory predic-
tion, the MMCM scores exhibit trends that differ from APD
and the accuracy metrics. This indicates that MMCM cap-
tures multimodality that prior metrics could not measure.

MMCM thus appears to have the potential to extend be-
yond HMP to other prediction tasks.
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