Precision Machining by Local Machining Station Method

Background and problems

- Rough positioning accuracy of robot, especially long robot arm such as space manipulator
- Machining additional small shape or repairing for large workpiece

Solution

 Adhering on workpiece to compensate for stiffness of device (LMS: Local Machining Station) and moving small machine tool under LMS

Advantages

- High measurement accuracy because of restriction of measurement range
- High frequency response of machine tool
- No disturbance of displacement of small mobile machine tool with power line, coolant nozzle or conditions of workpiece

Results

JRL: http://www.toyota-ti.ac.jp/Lab/Kikai/5k60/

- Changeable attitude
- Machining holes with higher positioning accuracy than robot

Applicable fields

- Space manipulator
- Machining or repairing on large workpiece

Concept of Local Machining Station (LMS)

Appearance of LMS

LMS as portable machine tool

LMS as end effector of robot arm

Usage of LMS

Machining sequence

Setting coordinate system by using holes as reference

Results of machining