Condition Monitoring and Displacement Control of Piezoelectric Actuator by Using Induced Charge

Electrode

Stacked piezo

Charge

Electrode for detection

Electrode for detection

 C_{C2}

detection

(coupling capacitors)

Measurement principle of

displacement of stacked piezoelectric

Multilayer

Equivalent circuit of piezoelectric actuator with electrodes for

piezoelectric actuator

 $1/G_{SYS}(s)$

actuator by using induced charge

Induced charge

Charge from

power supply

Charge

amplifier

supply

Power

Induced

Background and problem

• Hysteresis of displacement to applied voltage in piezoelectric actuator

Solution

 Monitoring induced charge on electrodes attached at ends of piezoelectric actuator, which is proportional to displacement

Advantages

- Enable to use conventional power supply
- Unnecessary high voltage supply
- Small size because of simple structure

Results

JRL: http://www.toyota-ti.ac.jp/Lab/Kikai/5k60

- Constant ratio of displacement to induced charge regardless of bias voltage and voltage amplitude
- Only 1 % hysteresis, which is 1/10
- Enable to control displacement for a long time by inverse transfer function compensation

Applicable fields

- Vibration control
- Ultraprecision positioning

Noise reduction by differential method

Principle of inverse transfer function compensation

Examples of hysteresis loop

Relationship between displacement and induced charge

Comparison of Step response

Result of noise reduction

Result of stair-like displacement control

Output of charge amplifier

Displacement of Piezoelectric actuator