高圧水素拡散火炎の着火・保炎位置に関する研究

豊田工業大学、熱エネルギー工学研究室

ᅻヒ	見
月	凤

水素は乱流燃焼では燃焼速度を100m/s以上まで増加でき、比推力も大きいので、自動車のみならず宇宙空 間などの難環境下でも高負荷燃焼として利用拡大が期待される。しかし,水素は右表の通り,気体では単位 体積当たりの発熱量がメタンの約1/3, プロパンの約1/8と小さく, また液体では沸点が約20Kと低いため, 輸 送機器では気体として40~70MPaの高圧搭載が通常である。そこで,水素を燃料として利用する際に基礎 データとして必要な、以下の項目について課題した。

〇噴出条件(圧力,ノズル径,ノズル形状)と火炎スケールの関係

〇保炎/吹き消え条件(噴出圧力,ノズル径),および数値計算による保炎のメカニズム考察

〇他燃料,および水素添加時における同様の実験と数値計算(今後の課題)

小茶叭初工	- 1寸 エル	, T X		
項目	単位	H2	CH4	C3H8
液密度	kg/m^3	71	260	507.6
ガス密度	kg/m^3	0.0899	0.6784	1.8954
発熱量	×10 ³ kJ∕kg	141.6	55.5	50.3
	×10 ³ kJ/m ³	12.6	39.6	<mark>98.8</mark>
最小着火エネルギー	mJ	0.02	0.28	0.25
燃焼速度	m/s	2.65	0.4	0.43
最低発火温度	K	803.15	918.15	783.15
沸点	K	20.28	111.65	231.11
燃焼範囲	vol%	4 ~ 75	5 ~ 15	2.1~9. 5

エネルギーチェーンとしての水素の位置付け

保炎/吹き飛び条件

火炎基部の流体力学的構造(数値計算)

•D>1mmでは、全てのPに

化学種,温度分布

(数値計算結果)

へと酸素が拡散して侵入

・低圧域での着火温度の低下による、第二限界着火