Divergent Nozzleにおける超音速水素噴流への着火特性

水素の特徴

[1] E. Rivard, Hydrogen Storage for Mobility : A Review (2019)

Table1 Physical property of H_2 , CH_4 and C_3H_8

水素の特徴	Physical property	Unit	H ₂	CH ₄	C ₃ H
・使用時にCOっを排出しない	Density	kg/m ³	0.0899	0.6784	1.895
・多種多様な製造法がある	Calorific value per	MI/m^3	12.8	40	101.9
例·メタンからの燃料変換 核熱の利用	a unit volume	1413/111	12:0		
工業プロセスの副産物	Min. ignition energy	mJ	0.02	0.28	0.25
バイオマスのガス化	Flammability limit	vol%	4 ~ 75	5 ~ 15	2.1~9
'かまたの テクロギ レー インロ	Application		a fuel	a utility	o tov
次世100エイルイーとして注日	Application		cell	gas	a lax

・単位体積当たりのエネルギーが他の炭化水素燃料と比べて小さいため 高圧での貯蔵が必要

・分子量が小さく軽いため容器の亀裂や接合不良から容易に漏洩

技術的背景

<mark>燃焼技術</mark> 水素ガスタービンなどの燃焼器において<mark>保炎</mark>は基本的な現象 燃焼が継続されている状態

安全性評価水素事故への懸念

実験結果 p_{ex} :出口圧力 m:質量流量 p_{∞} :背圧(大気圧) A*:ノズル流路の最小断面積 p_0 :よどみ点圧力 T_0 :よどみ点温度 **動撃波構造** η_e : 出口圧力と背圧の比 R : 気体定数 κ:比熱比(水素は1.406) M:マッハ数 ノズル内を等エントロピー流れと仮定 $\eta_{e} = 0.272$ (a) $\eta_{e} = 1.050$ (b) $\eta_{e} = 1.962$

ノズル出口圧力と背圧の比 $\eta_{e} = \frac{p_{ex}}{p_{\infty}} = \left(1 + \frac{\kappa - 1}{2}M^{2}\right)^{-\frac{1}{\kappa - 1}} \left(\frac{p_{0}}{r}\right)$ (a) $\eta_e < 0.9$: over–expanded jet (b) $0.9 < \eta_e < 1.1$: ideal-expanded jet (c) $1.1 < \eta_e < 2$: moderately-under-expanded jet

・水素ステーションのタンクから高圧漏洩し着火 ・燃料電池自動車による事故で<mark>火災が発生</mark>(TPRDの作動)

噴出口径や形状,圧力の違いで着火・保炎条件が変化

Fig. 1 Components of a pressurized hydrogen storage tank

技術発展、安全性の観点から 高圧水素噴流火炎の着火・保炎に関する研究が必要

研究目的

[2] 武野, 日本燃焼学会 52(160), 121-129 (2010)

従来の研究

・ノズル径d<1mmの範囲で 保炎する領域と保炎しない領域が存在 高圧側で再度保炎する領域が存在するメカニズムは 未だに解明できていない ・ノズル出口圧と背圧の比によって衝撃波構造が変化 $p_e > p_b$:不足膨張 $p_e = p_b$: 適正膨張 $p_e < p_b$:過膨張

Fig.7 Schlieren image and cell structure

(d) $2 < \eta_e < 4$: highly under-expanded jet

(e) $\eta_e > 4$: very highly under-expanded jet

実験方法

Fig.5 Experimental apparatus

Table	2 Nozz	zle o	liam	eters	(mm)	and	cross-	section	nal area	a ratio){
											-

d _{in}	d_{ex}	A_{ex}/A_{in}	d _{in}	d_{ex}	A_{ex}/A_{in}	d_{in}	d_{ex}	A_{ex}/A_{in}
0.41	0.58	2.02	0.52	0.66	1.62	0.62	0.86	1.93
0.41	0.90	4.89	0.51	1.16	5.17	0.61	1.36	5.00
0.42	1.18	7.93	0.51	1.44	7.88	0.61	1.72	8.07
0.41	1.29	9.78	0.52	1.63	9.72	0.61	1.92	9.84
0.40	1.46	13.24	0.53	1.81	11.58			

衝撃波構造を変化させるため)
流路が異なるノズルを設計	

1 7	
	仕様
光源	LD励起/固体レーザー
出力	50mW
発振波長	532nm
適応入射ビーム径	1.0mm
ピンホール径	25µm
ピンホール	1.75mm
最高撮影速度	8.0×10 ⁻⁶
フレーム撮影速度	2000fps
焦点距離	1500mm
レンズ径	150mm
	光源 出力 発振波長 適応入射ビーム径 ピンホール径 ピンホール 最高撮影速度 フレーム撮影速度 (1)

- ・Fig. の過膨張領域において正しい流量を計測 •各ノズルの流量係数を求め正確な流量を算出(現在調査中)
- ・適正膨張から過膨張への移行時の限界流量の変化の調査 →ノズル(d_{in}=0.5, A_{ex}/A_{in}=7 等)を設計し追加実験

・着火・保炎条件を解明するため保炎限界付近での火炎の挙動を調査 よどみ点圧力を詳細に変化させることができるバルブを使用 |正確な保炎限界流量/浮き上がり火炎距離/マッハディスク径の計測|

・断面積比を変えた拡大ノズルを使用 ・大気圧下において水素を噴射(2MPa~12MPa) ・着火源(プロパン火炎)消炎後,水素が保炎するかを観測