

固体燃料の低温酸化及びガス化反応機構の解明

- ▶ 石炭消費量は2011年以降増加傾向にあり、特に電気業が原子力発電所の 停止に伴い大きく増加している。今後、さらに石炭は重要なエネルギー源となる と考えられる。(Fig.1)
- ➤ 石炭やバイオマスは20°C程度の低温下でも、非常に鈍い発熱反応が生じている。 貯炭場や石炭バンカーでは、放熱が十分でなく温度が上昇し、発火に至る 火災例が数多く報告されている(Fig.2)。固体燃料を安全に使用するためには、 100℃以下の温度域における発熱機構を解明することが必要となる。
- ▶ 本研究では、固体燃料の100℃以下の温度域における酸化及びガス化反応に より生じた反応ガスの分析、赤外吸光法を用いた反応に伴う含酸素官能基の 変化の分析等を通し、適切な反応モデルを構築すること目的としている。

3.低温ガス化装置によるガス化速度の比較

2.実験試料の種類と表面観察

▶ 実験試料として4種の石炭を用いた。以下にその性状について記載する。

	工業分析(気乾ベース)				
試料種類	固有水分	灰分	揮発分	固定炭素	発熱量
	wt%	wt%	wt%	wt%	MJ/kg
褐炭※	51.6	7.48	24.14	16.78	10.8
	17.00	2.00	42.00	40.00	24.7
瀝青炭	3.80	10.50	43.70	42.00	29.1
無煙炭	2.20	4.30	6.10	87.40	33.7

て出久種の工業公析値(※提出のみ到差ベース)[3][/]

━−褐炭

━━ 亜瀝青炭

まとめ

- ▶ 新たに3種類の試料を追加し、基準試料とした。
- ➤ TG-DTA、SEMを用いて、試料の性状の評価を行った。
- ▶ 低温ガス化装置を用いて石炭試料、温度の違いよるガス生成速度の 定性的評価を行った。
- ➤ 低温酸化モデルを構築し、CO₂生成速度の評価を行った。

今後の課題

- ▶ ガス生成速度の定量的評価。
- ▶ 赤外吸光法による含酸素官能基の変化の分析。
- ▶ 低温ガス化装置を用いた実験の継続。
- ➤ CO、CO₂、CH₄の生成速度を評価するモデルの構築 ▶ 石炭の組成分析

Fig.10反応速度係数kaのアレニウスプロット

[1]資源エネルギー庁「エネルギー白書2016」、[2] http://www.kyuden.co.jp/effort_thirmal_new_index.html、[3] http://sanyokosyo.com/product.html、[7] Ahmet Arisoy, Basil Beamish, Reaction kinetics of coal oxidation at low temperature, Fuel, 159 (2015) 412-417 [4] 小松 洋介(芝エ大)、金子 祥三(東大)ら、過熱水蒸気雰囲気におけるポーランド褐炭の乾燥特性の実験的調査、炭層深度が乾燥特性に及ぼす影響の調査、日本機械学会動力・エネルギー技術シンポジウム講演論文集、Vol.20th Page.5-8 (2015.06.07) [5] 浦野ら、石炭類の細孔分布と内部表面積、工学化学雑誌 73巻 9号 (1970), [6] Nie Baisheng et al, Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy, Fuel, 158 (2015) 908-917,