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Information Extraction (IE)
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* |E aims at extracting structured information from unstructured text
* We focus on named entities, relations, and events

* Here, | briefly introduce the tasks and our recent models
* Neural models allow flexible modeling of structures
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Nested Named Entity Recognition
(Nested NER)

* Named entities are core elements in understanding text

* Traditional entity recognition methods often deal with flat entities,
but some recent models consider nested entities
 E.g., “the premier” is not enough to express the entity
* Discontinuous entities are also important (e.g., [Zhang et al., 2014])
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The premier of the western Canadian province of British Columbia ...
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Nested NER Models
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Relation Classification

* Arelation is often defined between an entity pair (binary relations)

* Traditional models classify each pair of given entities individually,
and they rarely consider their relations, a.k.a., overlapping relations

* Some inference may be helpful
* AlLivein B & B Located in C=» A Livein C

Located in

Live in

The premier of the western Canadian province of British Columbia ...
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Relation Classification Using
Edge-oriented Graphs (EoG)

[Christopoulou et al., 2018]

* Aggregates different-length walks on the entity
graph for classifying relations

* Edges have representations unlike graph neural nets

* Neural models allow aggregation, i.e., representing —{interpolation
different-length walks in the same space
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Event Extraction

* Events are often represented as directed acyclic graphs (DAGs)

* Given edges (binary relations), traditional models build event
candidates by enumerating their combinations, and classify them

* The enumeration is costly and approximation is required
* Child (or argument) events are often substituted by triggers
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p300 immunoprecipitated Foxp3 when both proteins were overexpressed in HEK 293T cells




Search-based Event Extraction
[Kurt et al., 2018]

* searches and fixes events in a
bottom-up manner

* Actions: add, ignore, construct f= i t=i+1
* No need to enumerate all the events B |[ veer B || veer
* Child event representations can be used *;’D .‘i?.’.‘f?f.’f.‘.’.‘r‘.?.’ .............. ]
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Heterogeneous Background

Information for Information Extraction

¢ Heterogenous information
(linguistic and non-linguistic) is
available to understand text

* Neural models allow representing

them in the same/related spaces

* How can we leverage them to
improve IE?
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(1) Sentence-level Structures

remdesivir was superior

* SyntaCtiC information has been known to placebo in shortening
to be useful for information extraction the time to recovery in
adults who were
* E.g., shortest path dependency kernels hospitalized with Covid-19

[Bunescu et al., 2005]

Sentence-level structures

* Recent deep models aim to be

independent from such information
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Syntactically-Informed Word
Representation [Tran et al., 2020}

* Inject syntactic information (POS, dependencies) into embeddings
using graph convolutional networks
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(? Document-level Information

e Entities are mentioned in a document several
times

* Aggregating information is sometimes helpful to
understand entities

* Relations are not always written in a sentence
=» Document-level relation extraction

Background: Although
several therapeutic agents
have been evaluated for
the treatment of coron-
virus disease 2019 (Covid-

19), ...

Conclusions: ..

remdesivir was superior
to placebo in shortening
the time to recovery in
adults who were
hospitalized with Covid-19

Document-level
information




Document-level Relation Extraction
Using Edge-oriented Graphs (EoGs)
[Christopoulou et al., 2019]

* Document-level relations between concepts

* Information is propagated via a document-level graph of mentions,
concepts, and sentences

* A concept aggregates the information of their mentions
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Iterative Edge Editing for

Document-level Relation Extraction

[Makino et al., 2021]
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(3 Literature Database

* Self-training on raw text corpus

* Most popular background information in deep learning

« word embeddings (word2vec [Mikolov et al., 2014]), contextualized embeddings
(BERT [Devlin et al., 2019])

* Citation networks are still unexplored for IE, although there are

plenty of studies on citation
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DeepEventMine: End-to-end
Event Extraction [Long et al., 2020]
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@ Knowledge Bases

* Knowledge bases contain information on entities and relations
* Distant supervision is often employed for relation extraction

* Countless efforts and methods for representation learning on
knowledge graphs are proposed, but the use of knowledge base

information is still [imited

—| Knowledge bases
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DDI Extraction with Drug Descriptions
and Molecule Structures
[Asada et al., 2020]

* Incorporating heterogeneous entity-related information into
drug-drug interaction extraction

* Descriptions: BERT, Molecule structures: Graph neural networks
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Relation Extraction with Knowledge
Base Priors [ Christopoulou et al., 2021]

* Using knowledgebase representations as priors for VAE-based
relation extraction model with sentence reconstruction
* Relation priors are computed from entity pairs by TransE

* Distant supervision just uses texts matched with knowledge base entries

and it does not use entire knowledge bases .

Entity 1 Entity 2 Relation ?t
Link Steve Jobs Apple /business/company/founders clr — 40
Prediction Ray Nagin | New Orleans | /people/person/place_of birth ﬁ ‘:7
& ¥ :
i R
¢ /\/7 Among other reasons , Apple 's chief executive , Steve Jobs , ... 35
o () ;About Apple 's Steve Jobs , who bought out ... bag 1 ) .
{}_1/7 Mayor Ray Nagin born in New Orleans has already ... 30
- p(z2) \ C. Ray Nagin, the mayor of New Orleans, ... [ bag 2 ) B Baseline M Sentence Reconstruction ™ Prior
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Relation Extraction with Knowledge
Base Priors [Christopoulou et al., 2021}
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Some Thoughts on Information
Extraction with Heterogeneous Information

* Neural models dominate recent IE tasks
* Many deep models work well “without external resources.”
* |s BERT-like model with more text data enough to perform IE?

* Many questions are still unresolved with external resources

* What information can we use?
* This talk misses many, e.g., tables and figures, document attributes, citation networks.

* How can we utilize multiple, heterogeneous resources?
* When and how do external resources improve the models?
* Are there any general way to incorporate external resource information?

* Bio-domain is one of the best domains to organize and investigate
external resources



Heterogeneous Phramaceutical Knowledge
Graph from DrugBank [Asada et al., 2021

° T X inf rm i n in Heterogeneous Pharmaceuticaliﬁo\vwﬁge Graph o
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groups attached to the ring
structure.

Name: Acetylsalicylic acid

Description: A/so known as Aspirin,
acetylsalicylic acid (ASA) is a
commonly used drug for the
treatment of pain and fever due to
various causes. -

Name: Mesalazine
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o Cyclooxygenase-1, PGH synthase 1,--- metabolized primarily in the liver. ‘
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Summary

e This talk introduced our recent efforts to information extraction
using heterogeneous information

* We investigated and will continue to investigate
* how to represent IE tasks with neural models
* how to represent multiple, heterogeneous external information
* how to combine IE and external information
* what external information to use

* We are recruiting
* https://www.aist.go.jp/aist e/humanres/itha6e.html



https://www.aist.go.jp/aist_e/humanres/ith26e.html
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